Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-101-mediated Akt activation and estrogen-independent growth

Abstract

MicroRNAs are gene regulators that work through a posttranscriptional repression mechanism. Dysregulation of microRNA expression could lead to a variety of disorders, in particular, human cancer, and has also been implicated in antihormone therapy resistance. However, little is known whether microRNAs have a role in estrogen-independent growth, leading to tamoxifen resistance in estrogen receptor (ER)-positive tumors. In this study, we use an in vivo selection system against a microRNA library using the MCF-7 model and demonstrate that miR-101 promotes estrogen-independent growth and causes the upregulation of phosphorylated Akt (pAkt) without impacting the ER level or activity. Importantly, although miR-101 suppresses cell growth in normal estradiol (E2)-containing medium, it promotes cell growth in E2-free medium. Moreover, estrogen deprivation greatly enhances miR-101-mediated Akt activation. Finally, we show that MAGI-2 (membrane-associated guanylate kinase), a scaffold protein required for PTEN (phosphatase and tensin homolog) activity, is a direct target for miR-101; suppression of MAGI-2 by miR-101 reduces PTEN activity, leading to Akt activation. Taken together, these results not only establish a role for miR-101 in estrogen-independent signaling but also provide a mechanistic link between miR-101 and Akt activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ER:

estrogen receptor

PCR:

polymerase chain reaction

RT:

reverse transcription

UTR:

untranslated region

References

  • Adams BD, Furneaux H, White BA . (2007). The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21: 1132–1147.

    Article  CAS  Google Scholar 

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  Google Scholar 

  • Anderson JM . (1996). Cell signalling: MAGUK magic. Curr Biol 6: 382–384.

    Article  CAS  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM . (2005). Principles of microRNA-target recognition. PLoS Biol 3: e85.

    Article  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    Article  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: e179.

    Article  Google Scholar 

  • Engelman JA . (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9: 550–562.

    Article  CAS  Google Scholar 

  • Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W et al. (2009). The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69: 2623–2629.

    Article  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ . (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154–D158.

    Article  CAS  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105.

    Article  CAS  Google Scholar 

  • Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS et al. (2002). Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage. Mol Cell Biol 22: 7831–7841.

    Article  CAS  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163–175.

    Article  CAS  Google Scholar 

  • Kirkegaard T, Witton CJ, McGlynn LM, Tovey SM, Dunne B, Lyon A et al. (2005). AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J Pathol 207: 139–146.

    Article  CAS  Google Scholar 

  • Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H . (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res 68: 5004–5008.

    Article  CAS  Google Scholar 

  • Los M, Maddika S, Erb B, Schulze-Osthoff K . (2009). Switching Akt: from survival signaling to deadly response. Bioessays 31: 492–495.

    Article  CAS  Google Scholar 

  • Lykkesfeldt AE . (1996). Mechanisms of tamoxifen resistance in the treatment of advanced breast cancer. Acta Oncol 35 (Suppl 5): 9–14.

    Article  Google Scholar 

  • Maddika S, Panigrahi S, Wiechec E, Wesselborg S, Fischer U, Schulze-Osthoff K et al. (2009). Unscheduled Akt-triggered activation of cyclin-dependent kinase 2 as a key effector mechanism of apoptin′s anticancer toxicity. Mol Cell Biol 29: 1235–1248.

    Article  CAS  Google Scholar 

  • Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Benes V et al. (2009). Widespread estrogen-dependent repression of microRNAs involved in breast tumor cell growth. Cancer Res 69: 8332–8340.

    Article  CAS  Google Scholar 

  • Maira SM, Galetic I, Brazil DP, Kaech S, Ingley E, Thelen M et al. (2001). Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294: 374–380.

    Article  CAS  Google Scholar 

  • Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL et al. (2008). MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283: 29897–29903.

    Article  CAS  Google Scholar 

  • Pandey DP, Picard D . (2009). miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29: 3783–3790.

    Article  CAS  Google Scholar 

  • Sachdeva M, Mo YY . (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 70: 378–387.

    Article  CAS  Google Scholar 

  • Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106: 3207–3212.

    Article  CAS  Google Scholar 

  • Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H et al. (2004). Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96: 926–935.

    Article  CAS  Google Scholar 

  • Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y et al. (2009). MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69: 1135–1142.

    Article  CAS  Google Scholar 

  • Tolkacheva T, Boddapati M, Sanfiz A, Tsuchida K, Kimmelman AC, Chan AM . (2001). Regulation of PTEN binding to MAGI-2 by two putative phosphorylation sites at threonine 382 and 383. Cancer Res 61: 4985–4989.

    CAS  PubMed  Google Scholar 

  • Torres J, Rodriguez J, Myers MP, Valiente M, Graves JD, Tonks NK et al. (2003). Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and PTEN-protein interactions. J Biol Chem 278: 30652–30660.

    Article  CAS  Google Scholar 

  • Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322: 1695–1699.

    Article  CAS  Google Scholar 

  • Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR . (2001). Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 276: 48627–48630.

    Article  CAS  Google Scholar 

  • Vazquez F, Ramaswamy S, Nakamura N, Sellers WR . (2000). Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20: 5010–5018.

    Article  CAS  Google Scholar 

  • Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ et al. (2000). Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci USA 97: 4233–4238.

    Article  CAS  Google Scholar 

  • Yu Y, Feig LA . (2002). Involvement of R-Ras and Ral GTPases in estrogen-independent proliferation of breast cancer cells. Oncogene 21: 7557–7568.

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao H, Asztalos S, Chisamore M, Sitabkhan Y, Tonetti DA . (2009). Estradiol-induced regression in T47D:A18/PKCalpha tumors requires the estrogen receptor and interaction with the extracellular matrix. Mol Cancer Res 7: 498–510.

    Article  Google Scholar 

  • Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X et al. (2008). MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283: 31079–31086.

    Article  CAS  Google Scholar 

  • Zhu S, Si ML, Wu H, Mo YY . (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282: 14328–14336.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Andy Wilber for the preparation of the viral stock used in this study and to Dr Yutaka Hata for the MAGI-2 construct. This work is supported by KG100027 from Susan G Komen for the Cure, by BC085629 from the Department of Defense and the research fund from Abraxis Bioscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-Y Mo.

Ethics declarations

Competing interests

LH and VT are employees of Abraxis Bioscience.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachdeva, M., Wu, H., Ru, P. et al. MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 30, 822–831 (2011). https://doi.org/10.1038/onc.2010.463

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.463

Keywords

This article is cited by

Search

Quick links