Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation

Abstract

Cancer cell molecular mimicry of stem cells (SC) imbues neoplastic cells with enhanced proliferative and renewal capacities. In support, numerous mediators of SC self-renewal have been evinced to show oncogenic potential. We have recently reported that short-hairpin RNA-mediated knockdown of the embryonic stem cell (ESC) self-renewal gene NANOG significantly reduced the clonogenic and tumorigenic capabilities of various cancer cells. In this study, we sought to test the potential pro-tumorigenic functions of NANOG, particularly, in prostate cancer (PCa). Using qRT–PCR, we first confirmed that PCa cells expressed NANOG mRNA primarily from the NANOGP8 locus on chromosome 15q14. We then constructed a lentiviral promoter reporter in which the −3.8-kb NANOGP8 genomic fragment was used to drive the expression of green fluorescence protein (GFP). We observed that NANOGP8-GFP+ PCa cells showed cancer stem cell (CSC) characteristics such as enhanced clonal growth and tumor regenerative capacity. To further investigate the functions and mechanisms of NANOG in tumorigenesis, we established tetracycline-inducible NANOG-overexpressing cancer cell lines, including both PCa (Du145 and LNCaP) and breast (MCF-7) cancer cells. NANOG induction promoted drug resistance in MCF-7 cells, tumor regeneration in Du145 cells and, most importantly, castration-resistant tumor development in LNCaP cells. These pro-tumorigenic effects of NANOG were associated with key molecular changes, including an upregulation of molecules such as CXCR4, IGFBP5, CD133 and ALDH1. The present gain-of-function studies, coupled with our recent loss-of-function work, establish the integral role for NANOG in neoplastic processes and shed light on its mechanisms of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Richard J. Rebello, Christoph Oing, … Robert G. Bristow

Abbreviations

AD:

androgen dependent

AI:

androgen independent

CE:

cloning efficiency

ChIP:

chromatin immunoprecipitation

CSC:

cancer stem cells

dox:

doxycycline

DP:

dorsal prostate

EMT:

epithelial mesenchymal transition

ESCs:

embryonic stem cells

HPCa:

human prostate cancer patient samples

NOD/SCID:

non-obese severe combined immunodeficient mice

PCa:

prostate cancer

qRT–PCR:

quantitative reverse-transcription polymerase chain reaction

s.c:

subcutaneous

SP:

side population

TSS:

transcription start site

UTR:

untranslated region

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP et al. (2010). Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466: 133–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth HA, Holland PW . (2004). Eleven daughters of NANOG. Genomics 84: 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon LY, Peyrollier K, Xia W, Gilad E . (2008). Hyaluronan–CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283: 17635–17651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S et al. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643–655.

    Article  CAS  PubMed  Google Scholar 

  • Chambers I, Tomlinson SR . (2009). The transcriptional foundation of pluripotency. Development 136: 2311–2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH et al. (2008). Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14: 4085–4095.

    Article  CAS  PubMed  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  • Engelmann K, Shen H, Finn OJ. . (2008). MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res. 68: 2419–2426.

    Article  CAS  PubMed  Google Scholar 

  • Frigo DE, Sherk AB, Wittmann BM, Norris JD, Wang Q, Joseph JD et al. (2009). Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Mol Endocrinol 23: 1385–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P et al. (2009). SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27: 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN . (2009). The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8: 3274–3284.

    Article  CAS  PubMed  Google Scholar 

  • Hochedlinger K, Yamada Y, Beard C, Jaenisch R . (2005). Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121: 465–477.

    Article  CAS  PubMed  Google Scholar 

  • Huss WJ, Gray DR, Greenberg NM, Mohler JL, Smith GJ . (2005). Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res 65: 6640–6650.

    Article  CAS  PubMed  Google Scholar 

  • Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C et al. (2009). Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cell 27: 993–1005.

    Article  CAS  Google Scholar 

  • Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis 26: 433–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG . (2008). PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 68: 1820–1825.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Jiang M, Honorio S, Patrawala L, Jeter CR, Calhoun-Davis T et al. (2009). Methodologies in assaying prostate cancer stem cells. Methods Mol Biol 568: 85–138.

    Article  CAS  PubMed  Google Scholar 

  • Li T, Su Y, Mei Y, Leng Q, Leng B et al. (2010). ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome. Lab Invest 90: 234–244.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. (2011). The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med Jan 17: 211–215.

    Article  CAS  Google Scholar 

  • Liu Y, Clem B, Zuba-Surma EK, El-Naggar S, Telang S, Jenson AB et al. (2009). Mouse fibroblasts lacking RB1 function form spheres and undergo reprogramming to a cancer stem cell phenotype. Cell Stem Cell 4: 336–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Wang Z, Guo Y, Pei D . (2009). The C-terminal pentapeptide of Nanog tryptophan repeat domain interacts with Nac1 and regulates stem cell proliferation but not pluripotency. J Biol Chem 284: 16071–16081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machida K, Tsukamoto H, Mkrtchyan H, Duan L, Dynnyk A, Liu HM et al. (2009). Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl Acad Sci USA 106: 1548–1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW et al. (1992). Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52: 6940–6944.

    CAS  PubMed  Google Scholar 

  • Medeiros RB, Papenfuss KJ, Hoium B, Coley K, Jadrich J, Goh SK et al. (2009). Novel sequential ChIP and simplified basic ChIP protocols for promoter co-occupancy and target gene identification in human embryonic stem cells. BMC Biotechnol 9: 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng HM, Zheng P, Wang XY, Liu C, Sui HM, Wu SJ et al. (2010). Overexpression of nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther 9: 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Miyake H, Nelson C, Rennie PS, Gleave ME . (2000). Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3′-kinase pathway. Endocrinology 141: 2257–2265.

    Article  CAS  PubMed  Google Scholar 

  • Nickerson T, Chang F, Lorimer D, Smeekens SP, Sawyers CL, Pollak M . (2001). in vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res 61: 6276–6280.

    CAS  PubMed  Google Scholar 

  • O'Brien CA, Pollett A, Gallinger S, Dick JE . (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110.

    Article  CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25: 1696–1708.

    Article  CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG . (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65: 6207–6219.

    Article  CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG . (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67: 6796–6805.

    Article  CAS  PubMed  Google Scholar 

  • Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140: 62–73.

    Article  CAS  PubMed  Google Scholar 

  • Piestun D, Kochupurakkal BS, Jacob-Hirsch J, Zeligson S, Koudritsky M, Domany E et al. (2006). Nanog transforms NIH3T3 cells and targets cell-type restricted genes. Biochem Biophys Res Commun 343: 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Po A, Ferretti E, Miele E, De Smaele E, Paganelli A, Canettieri G et al. (2010). Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J 29: 2646–2658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141: 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh UP, Grizzle WE, Lillard Jr JW. . (2004). CXCL12–CXCR4 iN-TERActions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest 84: 1666–1676.

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  • van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM et al. (2010). High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70: 5163–5173.

    Article  CAS  PubMed  Google Scholar 

  • Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY . (2008). Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2: 333–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Graf LF, Fazli L, Coleman IM, Mauldin DE, Li D et al. (2007). Regulation of global gene expression in the bone marrow microenvironment by androgen: androgen ablation increases insulin-like growth factor binding protein-5 expression. Prostate 67: 1621–1629.

    Article  CAS  PubMed  Google Scholar 

  • Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt SN, Borges I, Ruiz i Altaba A . (2010). NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J 29: 2659–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang X, Chen B, Suo G, Zhao Y, Duan Z et al. (2005). Expression of Nanog gene promotes NIH3T3 cell proliferation. Biochem Biophys Res Commun 338: 1098–1102.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM et al. (2008). Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68: 4311–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Neganova I, Przyborski S, Yang C, Cooke M, Atkinson SP et al. (2009). A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. J Cell Biol 184: 67–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. (1998). Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P Whitney for FACS, N Otto and the Histology Core for help in IHC analysis, J Moore for assistance in animal breeding and experiments, and other members of the Tang laboratory for support and discussions. This work was supported, in part, by grants from NIH (R01-ES015888, R21-ES015893, R21-CA150009), Department of Defense (W81XWH-07-1-0616, W81XWH-08-1-0472) and the Elsa Pardee Foundation (DGT), and by two Center Grants (CCSG-5 P30 CA016672-34 and ES007784). CR Jeter and C Liu were supported in part by fellowships from the AUA Foundation and DOD, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C R Jeter or D G Tang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeter, C., Liu, B., Liu, X. et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 30, 3833–3845 (2011). https://doi.org/10.1038/onc.2011.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.114

Keywords

This article is cited by

Search

Quick links