Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The proto-oncogene Pim-1 is a target of miR-33a

Abstract

The constitutively active serine/threonine kinase Pim-1 is upregulated in different cancer types, mainly based on the action of several interleukines and growth factors at the transcriptional level. So far, a regulation of oncogenic Pim-1 by microRNAs (miRNAs) has not been reported. Here, we newly establish miR-33a as a miRNA with potential tumor suppressor activity, acting through inhibition of Pim-1. A screen for miRNA expression in K562 lymphoma, LS174T colon carcinoma and several other cell lines revealed generally low endogenous miR-33a levels relative to other miRNAs. Transfection of K562 and LS174T cells with a miR-33a mimic reduced Pim-1 levels substantially. In contrast, the cell-cycle regulator cyclin-dependent kinase 6 predicted to be a conserved miR-33a target, was not downregulated by the miR-33a mimic. Seed mutagenesis of the Pim-1 3′-untranslated region in a luciferase reporter construct and in a Pim-1 cDNA expressed in Pim-1-deficient Skov-3 cells demonstrated specific and direct downregulation of Pim-1 by the miR-33a mimic. The persistence of this effect was comparable to that of a small interfering RNA-mediated knockdown of Pim-1, resulting in decelerated cell proliferation. In conclusion, we demonstrate the potential of miR-33a to act as a tumor suppressor miRNA, which suggests miR-33a replacement therapy through delivery of miR mimics as a novel therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ . (2004). Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 571: 43–49.

    Article  CAS  Google Scholar 

  • Amaravadi R, Thompson CB . (2005). The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 115: 2618–2624.

    Article  CAS  Google Scholar 

  • Aqeilan RI, Calin GA, Croce CM . (2010). miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17: 215–220.

    Article  CAS  Google Scholar 

  • Bachmann M, Hennemann H, Xing PX, Hoffmann I, Möröy T . (2004). The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint. J Biol Chem 279: 48319–48328.

    Article  CAS  Google Scholar 

  • Bachmann M, Möröy T . (2005). The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 37: 726–730.

    Article  CAS  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297. Review.

    Article  CAS  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233. Review.

    Article  CAS  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14: 1271–1277.

    Article  CAS  Google Scholar 

  • Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J . (2010). PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 95: 1004–1015. Review.

    Article  CAS  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM . (2005). Principles of microRNA-target recognition. PLoS Biol 3: e85.

    Article  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–21559.

    Article  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. (2005a). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: e179.

    Article  Google Scholar 

  • Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS . (2005b). Pim family kinases enhance tumor growth of prostate cancer cells. Mol Cancer Res 3: 443–451.

    Article  CAS  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    Article  CAS  Google Scholar 

  • Croce CM . (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10: 704–714. Review.

    Article  CAS  Google Scholar 

  • Crowell JA, Steele VE, Fay JR . (2007). Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther 6: 2139–2148.

    Article  CAS  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.

    Article  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs -- microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269. Review.

    Article  CAS  Google Scholar 

  • Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB . (2003). The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 17: 1841–1854.

    Article  CAS  Google Scholar 

  • Gangaraju VK, Lin H . (2009). MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10: 116–125.

    Article  CAS  Google Scholar 

  • Garzon R, Calin GA, Croce CM . (2009). MicroRNAs in cancer. Annu Rev Med 60: 167–179.

    Article  CAS  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105.

    Article  CAS  Google Scholar 

  • Grünweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J . (2003). Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31: 3185–3193.

    Article  Google Scholar 

  • Herrera-Merchan A, Cerrato C, Luengo G, Dominguez O, Piris MA, Serrano M et al. (2010). miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell Cycle 15: 3277–3285.

    Google Scholar 

  • Huang J, Manning BD . (2009). A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37: 217–222.

    Article  CAS  Google Scholar 

  • Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A et al. (2011). MiRNA replacement therapy through PEI-mediated in vivo delivery of miR-145 or miR-33a in colon carcinoma. Cancer Res (doi:10.1158/0008-5472.CAN-10-4645).

    Article  CAS  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  Google Scholar 

  • Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137: 1005–1017.

    Article  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R . (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7: 719–723.

    Article  CAS  Google Scholar 

  • Martelli AM, Tazzari PL, Evangelisti C, Chiarini F, Blalock WL, Billi AM et al. (2007). Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem 14: 2009–2023.

    Article  CAS  Google Scholar 

  • Meyerson M, Harlow E . (1994). Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 14: 2077–2086.

    Article  CAS  Google Scholar 

  • Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J et al. (2004). Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 24: 6104–6115.

    Article  CAS  Google Scholar 

  • Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y . (1999). Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem 274: 18659–18666.

    Article  CAS  Google Scholar 

  • Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N et al. (2007). Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13: 1467–1475.

    Article  CAS  Google Scholar 

  • Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE et al. (2010). MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328: 1566–1569.

    Article  CAS  Google Scholar 

  • Nawijn MC, Alendar A, Berns A . (2011). For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 11: 23–34. Review.

    Article  CAS  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  Google Scholar 

  • Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C et al. (2005). Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 280: 6130–6137.

    Article  CAS  Google Scholar 

  • Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N et al. (2010). miR-33 contributes to the regulation of cholesterol homeostasis. Science 328: 1570–1573.

    Article  CAS  Google Scholar 

  • Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E . (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11: 1640–1647.

    Article  CAS  Google Scholar 

  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58–63.

    Article  CAS  Google Scholar 

  • Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. (2009). Regression of murine lung tumors by the let-7 microRNA. Oncogene 29: 1580–1587.

    Article  Google Scholar 

  • van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. (1989). Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56: 673–682.

    Article  CAS  Google Scholar 

  • Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU et al. (2007). Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+cells. Blood 109: 4399–4405.

    Article  CAS  Google Scholar 

  • Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A . (1991). Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol Cell Biol 11: 1176–1179.

    Article  CAS  Google Scholar 

  • Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K et al. (2009). Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 16: 1148–1153.

    Article  CAS  Google Scholar 

  • Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS . (2002). Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 1593: 45–55.

    Article  CAS  Google Scholar 

  • Xia Z, Knaak C, Ma J, Beharry ZM, McInnes C, Wang W et al. (2009). Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J Med Chem 52: 74–86.

    Article  CAS  Google Scholar 

  • Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H et al. (2006). The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs. Oncogene 25: 70–78.

    Article  CAS  Google Scholar 

  • Yang ZZ, Tschopp O, Baudry A, Dümmler B, Hynx D, Hemmings BA . (2004). Physiological functions of protein kinase B/Akt. Biochem Soc Trans 32: 350–354. Review.

    Article  CAS  Google Scholar 

  • Zhang T, Zhang X, Ding K, Yang K, Zhang Z, Xu Y . (2010). PIM-1 gene RNA interference induces growth inhibition and apoptosis of prostate cancer cells and suppresses tumor progression in vivo. J Surg Oncol 101: 513–519.

    Article  CAS  Google Scholar 

  • Zhang W, Shay JW, Deisseroth A . (1993). Inactive p53 mutants may enhance the transcriptional activity of wild-type p53. Cancer Res 15: 4772–4775.

    Google Scholar 

  • Zhang Y, Wang Z, Li X, Magnuson NS . (2008). Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 27: 4809–4481.

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Z, Magnuson NS . (2007). Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Cancer Res 5: 909–922.

    Article  CAS  Google Scholar 

  • Zippo A, De Robertis A, Serafini R, Oliviero S . (2007). PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9: 932–944.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Robert Prinz, Dorothee Hartmann, Dennis Streng, Meike Thomas and Heide Marika Genau for technical support. This study was supported by the Fritz Thyssen Stiftung (reference no. 10.06.1.186 to AG and RKH), the Deutsche Krebshilfe (reference no. 109260 to AG, RKH and AA, and reference no. 106992 to AA) and DFG Forschergruppe Nanohale (AI 24/6-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Grünweller or R K Hartmann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, M., Lange-Grünweller, K., Weirauch, U. et al. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene 31, 918–928 (2012). https://doi.org/10.1038/onc.2011.278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.278

Keywords

This article is cited by

Search

Quick links