Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcriptional regulation of cellular senescence

Abstract

Cellular senescence is an irreversible arrest of proliferation. It is activated when a cell encounters stress such as DNA damage, telomere shortening or oncogene activation. Like apoptosis, it impedes tumour progression and acts as a barrier that pre-neoplastic cells must overcome during their evolution toward the full tumourigenic state. This review focuses on the role of transcriptional regulators in the control of cellular senescence, explores how their function is perturbed in cancer and discusses the potential to harness this knowledge for future cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J et al. (2009). The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23: 1171–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alani RM, Young AZ, Shifflett CB . (2001). Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc Natl Acad Sci USA 98: 7812–7816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aslanian A, Iaquinta PJ, Verona R, Lees JA . (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev 18: 1413–1422.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al. (2006). EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24: 268–273.

    CAS  PubMed  Google Scholar 

  • Bachmann IM, Puntervoll HE, Otte AP, Akslen LA . (2008). Loss of BMI-1 expression is associated with clinical progress of malignant melanoma. Mod Pathol 21: 583–590.

    CAS  PubMed  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.

    CAS  PubMed  Google Scholar 

  • Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M et al. (2009). Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23: 1177–1182.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    CAS  PubMed  Google Scholar 

  • Bea S, Tort F, Pinyol M, Puig X, Hernandez L, Hernandez S et al. (2001). BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 61: 2409–2412.

    CAS  PubMed  Google Scholar 

  • Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40: 499–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennecke M, Kriegl L, Bajbouj M, Retzlaff K, Robine S, Jung A et al. (2010). Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell 18: 135–146.

    CAS  PubMed  Google Scholar 

  • Bishop CL, Bergin AM, Fessart D, Borgdorff V, Hatzimasoura E, Garbe JC et al. (2010). Primary cilium-dependent and -independent Hedgehog signaling inhibits p16(INK4A). Mol Cell 40: 533–547.

    CAS  PubMed  Google Scholar 

  • Blais A, Dynlacht BD . (2007). E2F-associated chromatin modifiers and cell cycle control. Curr Opin Cell Biol 19: 658–662.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bracken AP, Ciro M, Cocito A, Helin K . (2004). E2F target genes: unraveling the biology. Trends Biochem Sci 29: 409–417.

    CAS  PubMed  Google Scholar 

  • Bracken AP, Helin K . (2009). Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9: 773–784.

    CAS  PubMed  Google Scholar 

  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C et al. (2007). The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21: 525–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K . (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22: 5323–5335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660–665.

    CAS  PubMed  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T . (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601.

    CAS  PubMed  Google Scholar 

  • Brown JP, Wei W, Sedivy JM . (1997). Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277: 831–834.

    CAS  PubMed  Google Scholar 

  • Burkhart DL, Sage J . (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8: 671–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cales C, Roman-Trufero M, Pavon L, Serrano I, Melgar T, Endoh M et al. (2008). Inactivation of the polycomb group protein Ring1B unveils an antiproliferative role in hematopoietic cell expansion and cooperation with tumorigenesis associated with Ink4a deletion. Mol Cell Biol 28: 1018–1028.

    CAS  PubMed  Google Scholar 

  • Call JA, Eckhardt SG, Camidge DR . (2008). Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol 9: 1002–1011.

    CAS  PubMed  Google Scholar 

  • Carragher LA, Snell KR, Giblett SM, Aldridge VS, Patel B, Cook SJ et al. (2010). V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol Med 2: 458–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Gu X, Su IH, Bottino R, Contreras JL, Tarakhovsky A et al. (2009). Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev 23: 975–985.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O et al. (2010). Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17: 376–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Classon M, Harlow E . (2002). The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2: 910–917.

    CAS  PubMed  Google Scholar 

  • Classon M, Salama S, Gorka C, Mulloy R, Braun P, Harlow E . (2000). Combinatorial roles for pRB, p107, and p130 in E2F-mediated cell cycle control. Proc Natl Acad Sci USA 97: 10820–10825.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    CAS  PubMed  Google Scholar 

  • Collado M, Serrano M . (2006). The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6: 472–476.

    CAS  PubMed  Google Scholar 

  • Collado M, Serrano M . (2010). Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10: 51–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darnell Jr JE. . (2002). Transcription factors as targets for cancer therapy. Nat Rev Cancer 2: 740–749.

    CAS  PubMed  Google Scholar 

  • del Arroyo AG, El Messaoudi S, Clark PA, James M, Stott F, Bracken A et al. (2007). E2F-dependent induction of p14ARF during cell cycle re-entry in human T cells. Cell Cycle 6: 2697–2705.

    PubMed  Google Scholar 

  • Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J et al. (2007). Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J 26: 1637–1648.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engelsen IB, Mannelqvist M, Stefansson IM, Carter SL, Beroukhim R, Oyan AM et al. (2008). Low BMI-1 expression is associated with an activated BMI-1-driven signature, vascular invasion, and hormone receptor loss in endometrial carcinoma. Br J Cancer 98: 1662–1669.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. (2010). Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42: 722–726.

    CAS  PubMed  Google Scholar 

  • Esteller M, Corn PG, Baylin SB, Herman JG . (2001). A gene hypermethylation profile of human cancer. Cancer Res 61: 3225–3229.

    CAS  PubMed  Google Scholar 

  • Esteller M . (2008). Epigenetics in cancer. N Engl J Med 358: 1148–1159.

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S . (2006). The epigenetic progenitor origin of human cancer. Nat Rev Genet 7: 21–33.

    CAS  PubMed  Google Scholar 

  • Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C, Whittaker CA et al. (2010). Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468: 572–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A et al. (2009). Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114: 2733–2743.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ et al. (2009). p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol 11: 1135–1142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gil J, Bernard D, Martinez D, Beach D . (2004). Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 6: 67–72.

    CAS  PubMed  Google Scholar 

  • Gil J, Peters G . (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7: 667–677.

    CAS  PubMed  Google Scholar 

  • Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M et al. (2006). Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66: 6361–6369.

    CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458: 223–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harley CB, Futcher AB, Greider CW . (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–460.

    CAS  PubMed  Google Scholar 

  • Haugstetter AM, Loddenkemper C, Lenze D, Grone J, Standfuss C, Petersen I et al. (2010). Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br J Cancer 103: 505–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    CAS  PubMed  Google Scholar 

  • Hayden A, Johnson PW, Packham G, Crabb SJ . (2010). S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Res Treat (e-pub ahead of print; doi:10.1007/s10549-010-0982-0).

    PubMed  Google Scholar 

  • Hayflick L, Moorhead PS . (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621.

    CAS  PubMed  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T et al. (1994). Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22: 3551–3555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holst CR, Nuovo GJ, Esteller M, Chew K, Baylin SB, Herman JG et al. (2003). Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63: 1596–1601.

    CAS  PubMed  Google Scholar 

  • Irelan JT, Gutierrez Del Arroyo A, Gutierrez A, Peters G, Quon KC, Miraglia L et al. (2009). A functional screen for regulators of CKDN2A reveals MEOX2 as a transcriptional activator of INK4a. PLoS One 4: e5067.

    PubMed  PubMed Central  Google Scholar 

  • Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ et al. (2003). Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23: 389–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs JJ, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM et al. (2000). Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet 26: 291–299.

    CAS  PubMed  Google Scholar 

  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . (1999). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397: 164–168.

    CAS  PubMed  Google Scholar 

  • Junttila MR, Karnezis AN, Garcia D, Madriles F, Kortlever RM, Rostker F et al. (2010). Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468: 567–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karamitopoulou E, Pallante P, Zlobec I, Tornillo L, Carafa V, Schaffner T et al. (2010). Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur J Cancer 46: 1438–1444.

    CAS  PubMed  Google Scholar 

  • Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106: 11667–11672.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP . (2008). SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol 28: 3457–3464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100: 11606–11611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komori H, Enomoto M, Nakamura M, Iwanaga R, Ohtani K . (2005). Distinct E2F-mediated transcriptional program regulates p14ARF gene expression. EMBO J 24: 3724–3736.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koontz JI, Soreng AL, Nucci M, Kuo FC, Pauwels P, van Den Berghe H et al. (2001). Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci USA 98: 6348–6353.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kortlever RM, Higgins PJ, Bernards R . (2006). Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8: 877–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y . (2007). pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev 21: 49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotake Y, Zeng Y, Xiong Y . (2009). DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res 69: 1809–1814.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    CAS  PubMed  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . (2010). The essence of senescence. Genes Dev 24: 2463–2479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133: 1019–1031.

    CAS  PubMed  Google Scholar 

  • Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E et al. (2008). Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res 68: 3193–3203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T . (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

    CAS  PubMed  Google Scholar 

  • Lazzerini Denchi E, Attwooll C, Pasini D, Helin K . (2005). Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25: 2660–2672.

    PubMed  Google Scholar 

  • Lessard J, Sauvageau G . (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260.

    CAS  PubMed  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    CAS  PubMed  Google Scholar 

  • Li H, Wang W, Liu X, Paulson KE, Yee AS, Zhang X . (2010). Transcriptional factor 1 targets P16(INK4A), upregulating its expression and consequently is involved in Ras-induced premature senescence. Oncogene 29: 5083–5094.

    CAS  PubMed  Google Scholar 

  • Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Mohlke KL et al. (2009). INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One 4: e5027.

    PubMed  PubMed Central  Google Scholar 

  • Loercher AE, Tank EM, Delston RB, Harbour JW . (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol 168: 35–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW, Sherr CJ . (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13: 77–83.

    CAS  PubMed  Google Scholar 

  • Luo RX, Postigo AA, Dean DC . (1998). Rb interacts with histone deacetylase to repress transcription. Cell 92: 463–473.

    CAS  PubMed  Google Scholar 

  • Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R et al. (1999). Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401: 670–677.

    CAS  PubMed  Google Scholar 

  • Maertens GN, El Messaoudi-Aubert S, Racek T, Stock JK, Nicholls J, Rodriguez-Niedenfuhr M et al. (2009). Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS One 4: e6380.

    PubMed  PubMed Central  Google Scholar 

  • Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K, Peters G . (2010). Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J 29: 2553–2565.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP et al. (1998). Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–605.

    CAS  PubMed  Google Scholar 

  • Majumder PK, Grisanzio C, O'Connell F, Barry M, Brito JM, Xu Q et al. (2008). A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 14: 146–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Perez D, Sanchez E, Maestre L, Suela J, Vargiu P, Di Lisio L et al. (2010). Deregulated expression of the polycomb-group protein SUZ12 target genes characterizes mantle cell lymphoma. Am J Pathol 177: 930–942.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matheu A, Klatt P, Serrano M . (2005). Regulation of the INK4a/ARF locus by histone deacetylase inhibitors. J Biol Chem 280: 42433–42441.

    CAS  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS . (2009). Long non-coding RNAs: insights into functions. Nat Rev Genet 10: 155–159.

    CAS  PubMed  Google Scholar 

  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC et al. (1995). 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1: 686–692.

    CAS  PubMed  Google Scholar 

  • Messaoudi-Aubert SE, Nicholls J, Maertens GN, Brookes S, Bernstein E, Peters G . (2010). Role for the MOV10 RNA helicase in polycomb-mediated repression of the INK4a tumor suppressor. Nat Struct Mol Biol 17: 862–868.

    PubMed  PubMed Central  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    CAS  PubMed  Google Scholar 

  • Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC et al. (2009). Direct inhibition of the NOTCH transcription factor complex. Nature 462: 182–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammad HP, Cai Y, McGarvey KM, Easwaran H, Van Neste L, Ohm JE et al. (2009). Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation. Cancer Res 69: 6322–6330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ . (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425: 962–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monahan KB, Rozenberg GI, Krishnamurthy J, Johnson SM, Liu W, Bradford MK et al. (2010). Somatic p16(INK4a) loss accelerates melanomagenesis. Oncogene 29: 5809–5817.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris EJ, Dyson NJ . (2001). Retinoblastoma protein partners. Adv Cancer Res 82: 1–54.

    CAS  PubMed  Google Scholar 

  • Mroz EA, Baird AH, Michaud WA, Rocco JW . (2008). COOH-terminal binding protein regulates expression of the p16INK4A tumor suppressor and senescence in primary human cells. Cancer Res 68: 6049–6053.

    CAS  PubMed  Google Scholar 

  • Muller J, Verrijzer P . (2009). Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr Opin Genet Dev 19: 150–158.

    PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    CAS  PubMed  Google Scholar 

  • Narita M, Lowe SW . (2005). Senescence comes of age. Nat Med 11: 920–922.

    CAS  PubMed  Google Scholar 

  • Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA, Myers MP et al. (2006). A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126: 503–514.

    CAS  PubMed  Google Scholar 

  • Negishi M, Saraya A, Mochizuki S, Helin K, Koseki H, Iwama A . (2010). A Novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/Arf locus through polycomb repressive complex 1. PLoS One 5: e12373.

    PubMed  PubMed Central  Google Scholar 

  • Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D et al. (2001). Rb targets histone H3 methylation and HP1 to promoters. Nature 412: 561–565.

    CAS  PubMed  Google Scholar 

  • Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. (2007). A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39: 237–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y et al. (2001). Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409: 1067–1070.

    CAS  PubMed  Google Scholar 

  • Pallante P, Federico A, Berlingieri MT, Bianco M, Ferraro A, Forzati F et al. (2008). Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res 68: 6770–6778.

    CAS  PubMed  Google Scholar 

  • Pantoja C, Serrano M . (1999). Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18: 4974–4982.

    CAS  PubMed  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305.

    CAS  PubMed  Google Scholar 

  • Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I . (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67: 3963–3969.

    CAS  PubMed  Google Scholar 

  • Puppe J, Drost R, Liu X, Joosse SA, Evers B, Cornelissen-Steijger P et al. (2009). BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A. Breast Cancer Res 11: R63.

    PubMed  PubMed Central  Google Scholar 

  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ . (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000.

    CAS  PubMed  Google Scholar 

  • Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599.

    CAS  PubMed  Google Scholar 

  • Reed JC . (2006). Drug insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat Clin Pract Oncol 3: 388–398.

    CAS  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    CAS  PubMed  Google Scholar 

  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP . (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25: 338–342.

    CAS  PubMed  Google Scholar 

  • Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T . (2003). Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424: 223–228.

    CAS  PubMed  Google Scholar 

  • Sauvageau M, Sauvageau G . (2010). Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7: 299–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. (2007). Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39: 232–236.

    CAS  PubMed  Google Scholar 

  • Schmitt CA . (2007). Cellular senescence and cancer treatment. Biochim Biophys Acta 1775: 5–20.

    CAS  PubMed  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109: 335–346.

    CAS  PubMed  Google Scholar 

  • Serrano M, Blasco MA . (2001). Putting the stress on senescence. Curr Opin Cell Biol 13: 748–753.

    CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    CAS  PubMed  Google Scholar 

  • Shay JW, Roninson IB . (2004). Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23: 2919–2933.

    CAS  PubMed  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    CAS  PubMed  Google Scholar 

  • Simon JA, Kingston RE . (2009). Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10: 697–708.

    CAS  PubMed  Google Scholar 

  • Sparmann A, van Lohuizen M . (2006). Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846–856.

    CAS  PubMed  Google Scholar 

  • Swarbrick A, Roy E, Allen T, Bishop JM . (2008). Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci USA 105: 5402–5407.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL et al. (2007). Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21: 1050–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RC, Cullen SP, Martin SJ . (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9: 231–241.

    CAS  PubMed  Google Scholar 

  • te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP . (2002). DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62: 1876–1883.

    CAS  PubMed  Google Scholar 

  • Timmermann S, Hinds PW, Munger K . (1998). Re-expression of endogenous p16ink4a in oral squamous cell carcinoma lines by 5-aza-2′-deoxycytidine treatment induces a senescence-like state. Oncogene 17: 3445–3453.

    CAS  PubMed  Google Scholar 

  • Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche D . (2001). Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 21: 6484–6494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). in vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    CAS  PubMed  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.

    CAS  PubMed  Google Scholar 

  • Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439: 871–874.

    CAS  PubMed  Google Scholar 

  • Voorhoeve PM, Agami R . (2003). The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4: 311–319.

    CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell 137: 413–431.

    CAS  PubMed  Google Scholar 

  • Wahlestedt C . (2006). Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov Today 11: 503–508.

    CAS  PubMed  Google Scholar 

  • Wei W, Hemmer RM, Sedivy JM . (2001). Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol 21: 6748–6757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. (2007). Epigenetic stem cell signature in cancer. Nat Genet 39: 157–158.

    CAS  PubMed  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445: 656–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi J, Sasaki M, Sato Y, Itatsu K, Harada K, Zen Y et al. (2010). Histone deacetylase inhibitor (SAHA) and repression of EZH2 synergistically inhibit proliferation of gallbladder carcinoma. Cancer Sci 101: 355–362.

    CAS  PubMed  Google Scholar 

  • Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S et al. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38: 662–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM et al. (2005). Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8: 19–30.

    CAS  PubMed  Google Scholar 

  • Zhang X, Kim J, Ruthazer R, McDevitt MA, Wazer DE, Paulson KE et al. (2006). The HBP1 transcriptional repressor participates in RAS-induced premature senescence. Mol Cell Biol 26: 8252–8266.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K et al. (2010). Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40: 939–953.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Eros Lazzerini and Jean-Christophe Marine for critical reading of the manuscript. Work in the Bracken Lab is supported by Science Foundation Ireland under the Principal Investigator Career Advancement Award (SFI PICA SFI/10/IN.1/B3002), the Health Research Board under the Health Research Awards 2010 (HRA_POR/2010/124), and the Irish Research Council for Science, Engineering and Technology (IRCSET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Bracken.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanigan, F., Geraghty, J. & Bracken, A. Transcriptional regulation of cellular senescence. Oncogene 30, 2901–2911 (2011). https://doi.org/10.1038/onc.2011.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.34

Keywords

This article is cited by

Search

Quick links