Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability

Abstract

Many tumors exhibit elevated chromosome mis-segregation termed chromosome instability (CIN), which is likely to be a potent driver of tumor progression and drug resistance. Causes of CIN are poorly understood but probably include prior genome tetraploidization, centrosome amplification and mitotic checkpoint defects. This study identifies epigenetic alteration of the centromere as a potential contributor to the CIN phenotype. The centromere controls chromosome segregation and consists of higher-order repeat (HOR) alpha-satellite DNA packaged into two chromatin domains: the kinetochore, harboring the centromere-specific H3 variant centromere protein A (CENP-A), and the pericentromeric heterochromatin, considered important for cohesion. Perturbation of centromeric chromatin in model systems causes CIN. As cancer cells exhibit widespread chromatin changes, we hypothesized that pericentromeric chromatin structure could also be affected, contributing to CIN. Cytological and chromatin immunoprecipitation and PCR (ChIP–PCR)-based analyses of HT1080 cancer cells showed that only one of the two HORs on chromosomes 5 and 7 incorporate CENP-A, an organization conserved in all normal and cancer-derived cells examined. Contrastingly, the heterochromatin marker H3K9me3 (trimethylation of H3 lysine 9) mapped to all four HORs and ChIP–PCR showed an altered pattern of H3K9me3 in cancer cell lines and breast tumors, consistent with a reduction on the kinetochore-forming HORs. The JMJD2B demethylase is overexpressed in breast tumors with a CIN phenotype, and overexpression of exogenous JMJD2B in cultured breast epithelial cells caused loss of centromere-associated H3K9me3 and increased CIN. These findings suggest that impaired maintenance of pericentromeric heterochromatin may contribute to CIN in cancer and be a novel therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alonso A, Hasson D, Cheung F, Warburton PE . (2010). A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3: 6.

    Article  Google Scholar 

  • Amato A, Schillaci T, Lentini L, Di Leonardo A . (2009). CENPA overexpression promotes genome instability in pRb-depleted human cells. Mol Cancer 8: 119.

    Article  Google Scholar 

  • Archidiacono N, Antonacci R, Marzella R, Finelli P, Lonoce A, Rocchi M . (1995). Comparative mapping of human alphoid sequences in great apes using fluorescence in situ hybridization. Genomics 25: 477–484.

    Article  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC et al. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.

    Article  CAS  Google Scholar 

  • Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H et al. (2011). Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30: 328–340.

    Article  CAS  Google Scholar 

  • Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC . (2001). Requirement of heterochromatin for cohesion at centromeres. Science 294: 2539–2542.

    Article  CAS  Google Scholar 

  • Bourgo RJ, Siddiqui H, Fox S, Solomon D, Sansam CG, Yaniv M et al. (2009). SWI/SNF deficiency results in aberrant chromatin organization, mitotic failure, and diminished proliferative capacity. Mol Biol Cell 20: 3192–3199.

    Article  CAS  Google Scholar 

  • Cahill DP, Kinzler KW, Vogelstein B, Lengauer C . (1999). Genetic instability and darwinian selection in tumours. Trends Cell Biol 9: M57–M60.

    Article  CAS  Google Scholar 

  • Cardinale S, Bergmann JH, Kelly D, Nakano M, Valdivia MM, Kimura H et al. (2009). Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol Biol Cell 20: 4194–4204.

    Article  CAS  Google Scholar 

  • David G, Dannenberg JH, Simpson N, Finnerty PM, Miao L, Turner GM et al. (2006). Haploinsufficiency of the mSds3 chromatin regulator promotes chromosomal instability and cancer only upon complete neutralization of p53. Oncogene 25: 7354–7360.

    Article  CAS  Google Scholar 

  • David G, Turner GM, Yao Y, Protopopov A, DePinho RA . (2003). mSin3-associated protein, mSds3, is essential for pericentric heterochromatin formation and chromosome segregation in mammalian cells. Genes Dev 17: 2396–2405.

    Article  CAS  Google Scholar 

  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC . (1997). Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91: 1021–1032.

    Article  CAS  Google Scholar 

  • Esteller M . (2008). Epigenetics in cancer. N Engl J Med 358: 1148–1159.

    Article  CAS  Google Scholar 

  • Finelli P, Antonacci R, Marzella R, Lonoce A, Archidiacono N, Rocchi M . (1996). Structural organization of multiple alphoid subsets coexisting on human chromosomes 1, 4, 5, 7, 9, 15, 18, and 19. Genomics 38: 325–330.

    Article  CAS  Google Scholar 

  • Fodor BD, Kubicek S, Yonezawa M, O'Sullivan RJ, Sengupta R, Perez-Burgos L et al. (2006). Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 20: 1557–1562.

    Article  CAS  Google Scholar 

  • Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE et al. (2005). Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7: 420–428.

    Article  CAS  Google Scholar 

  • Grimes BR, Babcock J, Rudd MK, Chadwick B, Willard HF . (2004). Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol 5: R89.

    Article  Google Scholar 

  • Grimes BR, Steiner CM, Merfeld-Clauss S, Traktuev DO, Smith D, Reese A et al. (2009). Interphase FISH demonstrates that human adipose stromal cells maintain a high level of genomic stability in long-term culture. Stem Cells Dev 18: 717–724.

    Article  CAS  Google Scholar 

  • Guenatri M, Bailly D, Maison C, Almouzni G . (2004). Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166: 493–505.

    Article  CAS  Google Scholar 

  • Haaf T, Ward DC . (1994). Structural analysis of alpha satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3: 697–709.

    Article  CAS  Google Scholar 

  • Herbert BS, Wright WE, Shay JW . (2002). p16(INK4a) inactivation is not required to immortalize human mammary epithelial cells. Oncogene 21: 7897–7900.

    Article  CAS  Google Scholar 

  • Hochreiter AE, Xiao H, Goldblatt EM, Gryaznov SM, Miller KD, Badve S et al. (2006). Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 12: 3184–3192.

    Article  CAS  Google Scholar 

  • Hulsebos T, Schonk D, van Dalen I, Coerwinkel-Driessen M, Schepens J, Ropers HH et al. (1988). Isolation and characterization of alphoid DNA sequences specific for the pericentric regions of chromosomes 4, 5, 9, and 19. Cytogenet Cell Genet 47: 144–148.

    Article  CAS  Google Scholar 

  • Kops GJ, Weaver BA, Cleveland DW . (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5: 773–785.

    Article  CAS  Google Scholar 

  • Lee C, Wevrick R, Fisher RB, Ferguson-Smith MA, Lin CC . (1997). Human centromeric DNAs. Hum Genet 100: 291–304.

    Article  CAS  Google Scholar 

  • Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W et al. (2002). Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99: 1978–1983.

    Article  CAS  Google Scholar 

  • Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP et al. (2009). Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28: 4491–4500.

    Article  CAS  Google Scholar 

  • Lohse B, Kristensen JL, Kristensen LH, Agger K, Helin K, Gajhede M et al. (2011). Inhibitors of histone demethylases. Bioorg Med Chem 19: 3625–3636.

    Article  CAS  Google Scholar 

  • Malorni L, Shetty PB, Hilsenbeck SG, Rimawi MF, Elledge RM, De Angelis C et al. (2010). Triple-negative breast cancers: biomarkers and outcomes. J Clin Oncol 28 (15 Suppl): 10621.

    Article  Google Scholar 

  • Mitelman F, Johansson B, Mertens F . Catalog of Chromosome Aberrations in Cancer, 5th edn. Wiley-Liss: New York, USA, 1994.

    Google Scholar 

  • Mravinac B, Sullivan LL, Reeves JW, Yan CM, Kopf KS, Farr CJ et al. (2009). Histone modifications within the human X centromere region. PLoS One 4: e6602.

    Article  Google Scholar 

  • Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S et al. (2008). Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14: 507–522.

    Article  CAS  Google Scholar 

  • Ohzeki J, Nakano M, Okada T, Masumoto H . (2002). CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159: 765–775.

    Article  CAS  Google Scholar 

  • Palmer DK, O'Day K, Wener MH, Andrews BS, Margolis RL . (1987). A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104: 805–815.

    Article  CAS  Google Scholar 

  • Pedersen MT, Helin K . (2010). Histone demethylases in development and disease. Trends Cell Biol 20: 662–671.

    Article  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  Google Scholar 

  • Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C et al. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–337.

    Article  CAS  Google Scholar 

  • Radovich M, Clare SE, Sledge GW, Pardo I, Mathieson T, Kassem N et al. The transcriptional landscape of triple-negative breast cancer compared to normal breast tissues using next-generation RNA sequencing. (submitted).

  • Ramirez RD, Herbert BS, Vaughan MB, Zou Y, Gandia K, Morales CP et al. (2003). Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene 22: 433–444.

    Article  CAS  Google Scholar 

  • Rodriguez-Paredes M, Esteller M . (2011). Cancer epigenetics reaches mainstream oncology. Nat Med 17: 330–339.

    Article  CAS  Google Scholar 

  • Rosandic M, Paar V, Basar I, Gluncic M, Pavin N, Pilas I . (2006). CENP-B box and pJalpha sequence distribution in human alpha satellite higher-order repeats (HOR). Chromosome Res 14: 735–753.

    Article  CAS  Google Scholar 

  • Rose NR, Woon EC, Kingham GL, King ON, Mecinovic J, Clifton IJ et al. (2010). Selective inhibitors of the JMJD2 histone demethylases: combined nondenaturing mass spectrometric screening and crystallographic approaches. J Med Chem 53: 1810–1818.

    Article  CAS  Google Scholar 

  • Schindelhauer D, Schuffenhauer S, Gasser T, Steinkasserer A, Meitinger T . (1995). The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1. Genomics 28: 605–607.

    Article  CAS  Google Scholar 

  • Schuffenhauer S, Kobelt A, Daumer-Haas C, Loffler C, Muller G, Murken J et al. (1996). Interstitial deletion 5p accompanied by dicentric ring formation of the deleted segment resulting in trisomy 5p13-cen. Am J Med Genet 65: 56–59.

    Article  CAS  Google Scholar 

  • Shin HJ, Baek KH, Jeon AH, Kim SJ, Jang KL, Sung YC et al. (2003). Inhibition of histone deacetylase activity increases chromosomal instability by the aberrant regulation of mitotic checkpoint activation. Oncogene 22: 3853–3858.

    Article  CAS  Google Scholar 

  • Sullivan BA, Karpen GH . (2004). Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11: 1076–1083.

    Article  CAS  Google Scholar 

  • Sullivan BA, Warburton PE . (1999). Studying progression of vertebrate chromosomes through mitosis by immunofluorescence and FISH. In: Bickmore WA (ed). Chromosome Structural Analysis-A Practical Approach. Oxford University Press: Oxford, pp 81–101.

    Google Scholar 

  • Sullivan LL, Boivin CD, Mravinac B, Song IY, Sullivan BA . (2011). Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res 19: 457–470.

    Article  CAS  Google Scholar 

  • Thompson SL, Bakhoum SF, Compton DA . (2010). Mechanisms of chromosomal instability. Curr Biol 20: R285–R295.

    Article  CAS  Google Scholar 

  • Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ et al. (2011). Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331: 593–596.

    Article  CAS  Google Scholar 

  • Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T et al. (2003). Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63: 3511–3516.

    CAS  PubMed  Google Scholar 

  • Vafa O, Sullivan KF . (1997). Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr Biol 7: 897–900.

    Article  CAS  Google Scholar 

  • Verdaasdonk JS, Bloom K . (2011). Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 12: 320–332.

    Article  CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G et al. (1997). Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7: 901–904.

    Article  CAS  Google Scholar 

  • Warburton PE, Willard HF . (1996). Evolution of centromeric alpha satellite DNA: molecular organization within and between human and primate chromosomes. In: Jackson M, Strachan T, Dover G (eds). Human Genome Evolution. BIOS Scientific Publishers: Oxford, pp 121–145.

    Google Scholar 

  • Waye JS, England SB, Willard HF . (1987). Genomic organization of alpha satellite DNA on human chromosome 7: evidence for two distinct alphoid domains on a single chromosome. Mol Cell Biol 7: 349–356.

    Article  CAS  Google Scholar 

  • Wevrick R, Willard HF . (1991). Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucleic Acids Res 19: 2295–2301.

    Article  CAS  Google Scholar 

  • Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z et al. (2006). Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125: 467–481.

    Article  CAS  Google Scholar 

  • Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL et al. (2007). Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17: 1146–1160.

    Article  CAS  Google Scholar 

  • Yang J, Jubb AM, Pike L, Buffa FM, Turley H, Baban D et al. (2010). The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Res 70: 6456–6466.

    Article  CAS  Google Scholar 

  • Yoda K, Morishita S, Hashimoto K . (2004). Histone variant CENP-A purification, nucleosome reconstitution. Methods Enzymol 375: 253–269.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kinya Yoda for advice with ChIP assays; Simone Schuffenhauer and Jan Murken for BF cells; Hunt Willard, Mariano Rocci and Theo Hulsebos for centromere plasmid probes; Tim Yen for CENP-E antibodies; Mervin Yoder for HUVEC samples; Virginia Thurston for advice on the patient BF sample and Andrew Ross, Nikki Collins, Janak Bhavsar, Tony Brown, Waylan Bessler and Laura Mead for technical assistance. This research was supported in part by INGEN (Indiana Genomics Initiative), the IUSM Cytogenetics Division and grants from the US DOD BCRP (W81XWH-09-1-0424) and American Cancer Society (IRG-84-002-24) awarded to BRG, IUSM Biomedical Research Grants awarded to RBS and an NCI grant (N01 CN-43300) to BSH. DS was supported by Deutsche Forschungsgemeinschaft and the Friedrich Baur Institute. INGEN is supported in part by Lilly Endowment. MR was supported by an NIH pre-doctoral fellowship (NRSA 1 T32 CA 111198 Cancer Biology Training Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B R Grimes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slee, R., Steiner, C., Herbert, BS. et al. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene 31, 3244–3253 (2012). https://doi.org/10.1038/onc.2011.502

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.502

Keywords

This article is cited by

Search

Quick links