Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress

Abstract

The family of ADAM (a disintegrin and metalloproteinase) proteins has been implicated in tumor initiation and progression. ADAM17/tumor necrosis factor-α (TNFα)-converting enzyme (TACE) has been initially recognized to release TNFα as well as its receptors (TNFRs) from the membrane. ADAM17, TNFα and TNFR have been found upregulated in cancer patients, although the underlying mechanisms remain largely unknown. As hypoxia is a hallmark of cancer that can lead to severe stress conditions accumulating in endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), we investigated the role of these stress conditions in the regulation of ADAM17 and release of TNFR1.We found that severe hypoxia induced ADAM17 expression and activity. Although hypoxia-inducible factor 1α (HIF1α) was important to maintain basal ADAM17 mRNA levels during moderate hypoxia, it was not sufficient to induce ADAM17 levels under severe hypoxia. Instead, we found that ADAM17 induction by severe hypoxia can be mimicked by ER stressors such as Thapsigargin and occurs as a consequence of the activation of the PERK/eIF2α/ATF4 and activating transcription factor 6 (ATF6) arms of UPR in several tumor cell lines. ADAM17 expression was also increased in xenografts displaying ER stress because of treatment with the vascular endothelial growth factor (VEGF) inhibitory antibody Bevacizumab. Additionally, severe hypoxia and ER stress activated ADAM17 and ectodomain shedding of TNFR1 involving mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS). Collectively, these results show that ADAM17 is a novel UPR-regulated gene in response to severe hypoxia and ER stress, which is actively involved in the release of TNFR1 under these conditions. These data provide a novel link between severe hypoxic stress conditions and inflammation in the tumor environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aderka D, Englemann H, Hornik V, Skornick Y, Levo Y, Wallach D et al. (1991). Increased serum levels of soluble receptors for tumor necrosis factor in cancer patients. Cancer Res 51: 5602–5607.

    CAS  PubMed  Google Scholar 

  • Aggarwal BB . (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3: 745–756.

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ et al. (1985). Human tumor necrosis factor. Production, purification, and characterization. J Biol Chem 260: 2345–2354.

    CAS  PubMed  Google Scholar 

  • Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ et al. (1998). TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435: 39–44.

    CAS  PubMed  Google Scholar 

  • Arsenault D, Lucien F, Dubois CM . (2011). Hypoxia enhances cancer cell invasion through relocalization of the proprotein convertase furin from the trans-Golgi network to the cell surface. J Cell Physiol (e-pub ahead of print 18 April 2011; doi:10.1002/jcp.22792).

    Google Scholar 

  • Balkwill F . (2009). Tumour necrosis factor and cancer. Nat Rev Cancer 9: 361–371.

    CAS  PubMed  Google Scholar 

  • Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N et al. (2005). ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 24: 3470–3481.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF et al. (1997). A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385: 729–733.

    CAS  PubMed  Google Scholar 

  • Blais JD, Addison CL, Edge R, Falls T, Zhao H, Wary K et al. (2006). Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26: 9517–9532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchot-Jossic F, Jarry A, Masson D, Bach-Ngohou K, Paineau J, Denis MG et al. (2005). Up-regulated expression of ADAM17 in human colon carcinoma: co-expression with EGFR in neoplastic and endothelial cells. J Pathol 207: 156–163.

    CAS  PubMed  Google Scholar 

  • Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D et al. (2005). A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307: 935–939.

    CAS  PubMed  Google Scholar 

  • Brown JM, Wilson WR . (2004). Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4: 437–447.

    CAS  PubMed  Google Scholar 

  • Burton ER, Libutti SK . (2009). Targeting TNF-alpha for cancer therapy. J Biol 8: 85.

    PubMed  PubMed Central  Google Scholar 

  • Charbonneau M, Harper K, Grondin F, Pelmus M, McDonald PP, Dubois CM . (2007). Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by synovial cells. J Biol Chem 282: 33714–33724.

    CAS  PubMed  Google Scholar 

  • Chen Y, Feldman DE, Deng C, Brown JA, De Giacomo AF, Gaw AF et al. (2005). Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Cancer Res 3: 669–677.

    CAS  PubMed  Google Scholar 

  • Coleman ML, Ratcliffe PJ . (2007). Oxygen sensing and hypoxia-induced responses. Essays Biochem 43: 1–15.

    CAS  PubMed  Google Scholar 

  • Cullinan SB, Diehl JA . (2004). PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279: 20108–20117.

    CAS  PubMed  Google Scholar 

  • Dai R, Chen R, Li H . (2009). Cross-talk between PI3K/Akt and MEK/ERK pathways mediates endoplasmic reticulum stress-induced cell cycle progression and cell death in human hepatocellular carcinoma cells. Int J Oncol 34: 1749–1757.

    CAS  PubMed  Google Scholar 

  • Diaz-Rodriguez E, Montero JC, Esparis-Ogando A, Yuste L, Pandiella A . (2002). Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol Biol Cell 13: 2031–2044.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diebold I, Petry A, Hess J, Gorlach A . (2010). The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 21: 2087–2096.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diez-Ruiz A, Tilz GP, Zangerle R, Baier-Bitterlich G, Wachter H, Fuchs D . (1995). Soluble receptors for tumour necrosis factor in clinical laboratory diagnosis. Eur J Haematol 54: 1–8.

    CAS  PubMed  Google Scholar 

  • Eggermont AM, de Wilt JH, ten Hagen TL . (2003). Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol 4: 429–437.

    PubMed  Google Scholar 

  • Engelmann H, Novick D, Wallach D . (1990). Two tumor necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J Biol Chem 265: 1531–1536.

    CAS  PubMed  Google Scholar 

  • Feinberg B, Kurzrock R, Talpaz M, Blick M, Saks S, Gutterman JU . (1988). A phase I trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients. J Clin Oncol 6: 1328–1334.

    CAS  PubMed  Google Scholar 

  • Finger EC, Giaccia AJ . (2010). Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29: 285–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraker DL, Alexander HR, Andrich M, Rosenberg SA . (1996). Treatment of patients with melanoma of the extremity using hyperthermic isolated limb perfusion with melphalan, tumor necrosis factor, and interferon gamma: results of a tumor necrosis factor dose-escalation study. J Clin Oncol 14: 479–489.

    CAS  PubMed  Google Scholar 

  • Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang W-P, He A et al. (2006). The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscl Thromb Vasc Biol 26: 2490–2496.

    CAS  PubMed  Google Scholar 

  • Gorlach A, Klappa P, Kietzmann T . (2006). The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8: 1391–1418.

    PubMed  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M . (2010). Immunity, inflammation, and cancer. Cell 140: 883–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11: 619–633.

    CAS  PubMed  Google Scholar 

  • Harris AL . (2002). Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38–47.

    CAS  PubMed  Google Scholar 

  • Heller RA, Song K, Onasch MA, Fischer WH, Chang D, Ringold GM . (1990). Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. Proc Natl Acad Sci USA 87: 6151–6155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Han Z, Couvillon AD, Exton JH . (2004). Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279: 49420–49429.

    CAS  PubMed  Google Scholar 

  • Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH . (2006). Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26: 3071–3084.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT et al. (2004). Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem 279: 46384–46392.

    CAS  PubMed  Google Scholar 

  • Jiang CC, Chen LH, Gillespie S, Wang YF, Kiejda KA, Zhang XD et al. (2007). Inhibition of MEK sensitizes human melanoma cells to endoplasmic reticulum stress-induced apoptosis. Cancer Res 67: 9750–9761.

    CAS  PubMed  Google Scholar 

  • Karin M, Greten FR . (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5: 749–759.

    CAS  PubMed  Google Scholar 

  • Kenny PA, Bissell MJ . (2007). Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest 117: 337–345.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kornfeld JW, Meder S, Wohlberg M, Friedrich RE, Rau T, Riethdorf L et al. (2011). Overexpression of TACE and TIMP3 mRNA in head and neck cancer: association with tumour development and progression. Br J Cancer 104: 138–145.

    CAS  PubMed  Google Scholar 

  • Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N et al. (2002a). Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22: 7405–7416.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N et al. (2002b). Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22: 7405–7416.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koumenis C, Wouters BG . (2006). Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res 4: 423–436.

    CAS  PubMed  Google Scholar 

  • Langkopf F, Atzpodien J . (1994). Soluble tumour necrosis factor receptors as prognostic factors in cancer patients. Lancet 344: 57–58.

    CAS  PubMed  Google Scholar 

  • Li J, Wang JJ, Yu Q, Wang M, Zhang SX . (2009). Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett 583: 1521–1527.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wise DR, Diehl JA, Simon MC . (2008a). Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem 283: 31153–31162.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wise DR, Diehl JA, Simon MC . (2008b). Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem 283: 31153–31162.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H et al. (1990). Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61: 351–359.

    CAS  PubMed  Google Scholar 

  • Lu PD, Jousse C, Marciniak SJ, Zhang Y, Novoa I, Scheuner D et al. (2004). Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J 23: 169–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F . (2008). Cancer-related inflammation. Nature 454: 436–444.

    CAS  PubMed  Google Scholar 

  • McCulloch DR, Harvey M, Herington AC . (2000). The expression of the ADAMs proteases in prostate cancer cell lines and their regulation by dihydrotestosterone. Mol Cell Endocrin 167: 11–21.

    CAS  Google Scholar 

  • McGowan PM, Ryan BM, Hill ADK, McDermott E, O'Higgins N, Duffy MJ . (2007). ADAM-17 expression in breast cancer correlates with variables of tumor progression. Clin Cancer Res 13: 2335–2343.

    CAS  PubMed  Google Scholar 

  • McMahon S, Grondin F, McDonald PP, Richard DE, Dubois CM . (2005). Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. J Biol Chem 280: 6561–6569.

    CAS  PubMed  Google Scholar 

  • Milla ME, Leesnitzer MA, Moss ML, Clay WC, Carter HL, Miller AB et al. (1999). Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). J Biol Chem 274: 30563–30570.

    CAS  PubMed  Google Scholar 

  • Mochizuki S, Okada Y . (2007). ADAMs in cancer cell proliferation and progression. Cancer Sci 98: 621–628.

    CAS  PubMed  Google Scholar 

  • Mujcic H, Rzymski T, Rouschop KM, Koritzinsky M, Milani M, Harris AL et al. (2009). Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3. Radiother Oncol 92: 450–459.

    CAS  PubMed  Google Scholar 

  • Murphy G . (2008). The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8: 929–941.

    CAS  PubMed  Google Scholar 

  • Myers TJ, Brennaman LH, Stevenson M, Higashiyama S, Russell WE, Lee DC et al. (2009). Mitochondrial reactive oxygen species mediate GPCR-induced TACE/ADAM17-dependent transforming growth factor-alpha shedding. Mol Biol Cell 20: 5236–5249.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa M, Nabeshima K, Asano S, Hamasaki M, Uesugi N, Tani H et al. (2009). Up-regulated expression of ADAM17 in gastrointestinal stromal tumors: coexpression with EGFR and EGFR ligands. Cancer Sci 100: 654–662.

    CAS  PubMed  Google Scholar 

  • Nophar Y, Kemper O, Brakebusch C, Englemann H, Zwang R, Aderka D et al. (1990). Soluble forms of tumor necrosis factor receptors (TNF-Rs). The cDNA for the type I TNF-R, cloned using amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor. EMBO J 9: 3269–3278.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pei D, Weiss SJ . (1995). Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375: 244–247.

    CAS  PubMed  Google Scholar 

  • Peters LR, Raghavan M . (2011). Endoplasmic reticulum calcium depletion impacts chaperone secretion, innate immunity, and phagocytic uptake of cells. J Immunol 187: 919–931.

    CAS  PubMed  Google Scholar 

  • Reibnegger G, Diez-Ruiz A, Fuchs D, Wachter H . (1994). Soluble tumour necrosis factor receptors as prognostic factors in cancer. Lancet 344: 681–682.

    CAS  PubMed  Google Scholar 

  • Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee A-H, Yoshida H et al. (2004). XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64: 5943–5947.

    CAS  PubMed  Google Scholar 

  • Ron D, Walter P . (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529.

    CAS  PubMed  Google Scholar 

  • Rzymski T, Harris AL . (2007). The unfolded protein response and integrated stress response to anoxia. Clin Cancer Res 13: 2537–2540.

    CAS  PubMed  Google Scholar 

  • Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L et al. (2010). Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29: 4424–4435.

    CAS  PubMed  Google Scholar 

  • Rzymski T, Paantjens A, Bod J, Harris AL . (2008). Multiple pathways are involved in the anoxia response of SKIP3 including HuR-regulated RNA stability, NF-kappaB and ATF4. Oncogene 27: 4532–4543.

    CAS  PubMed  Google Scholar 

  • Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH et al. (1990). Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61: 361–370.

    CAS  PubMed  Google Scholar 

  • Seals DF, Courtneidge SA . (2003). The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17: 7–30.

    CAS  PubMed  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    CAS  PubMed  Google Scholar 

  • Srour N, Lebel A, McMahon S, Fournier I, Fugere M, Day R et al. (2003). TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett 554: 275–283.

    CAS  PubMed  Google Scholar 

  • Szalad A, Katakowski M, Zheng X, Jiang F, Chopp M . (2009). Transcription factor Sp1 induces ADAM17 and contributes to tumor cell invasiveness under hypoxia. J Exp Clin Cancer Res 28: 129.

    PubMed  PubMed Central  Google Scholar 

  • Szlosarek PW, Balkwill FR . (2003). Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4: 565–573.

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Miyamoto S, Suzuki SO, Oki E, Yagi H, Sonoda K et al. (2005). Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin Cancer Res 11: 4783–4792.

    CAS  PubMed  Google Scholar 

  • Vahdat AM, Reiners KS, Simhadri VL, Eichenauer DA, Boll B, Chalaris A et al. (2010). TNF-alpha-converting enzyme (TACE/ADAM17)-dependent loss of CD30 induced by proteasome inhibition through reactive oxygen species. Leukemia 24: 51–57.

    CAS  PubMed  Google Scholar 

  • Van Zee KJ, Kohno T, Fischer E, Rock CS, Moldawer LL, Lowry SF . (1992). Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci USA 89: 4845–4849.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viac J, Vincent C, Palacio S, Schmitt D, Claudy A . (1996). Tumour necrosis factor (TNF) soluble receptors in malignant melanoma: correlation with soluble ICAM-1 levels. Eur J Cancer 32A: 447–449.

    CAS  PubMed  Google Scholar 

  • Waetzig GH, Rosenstiel P, Arlt A, Till A, Brautigam K, Schafer H et al. (2005). Soluble tumor necrosis factor (TNF) receptor-1 induces apoptosis via reverse TNF signaling and autocrine transforming growth factor-beta1. FASEB J 19: 91–93.

    CAS  PubMed  Google Scholar 

  • Willems SH, Tape CJ, Stanley PL, Taylor NA, Mills IG, Neal DE et al. (2011). Thiol isomerases negatively regulate the cellular shedding activity of ADAM17. Biochem J 428: 439–450.

    Google Scholar 

  • Xu P, Derynck R . (2010). Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol Cell 37: 551–566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue X, Piao JH, Nakajima A, Sakon-Komazawa S, Kojima Y, Mori K et al. (2005). Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem 280: 33917–33925.

    CAS  PubMed  Google Scholar 

  • Yoshimura T, Tomita T, Dixon MF, Axon AT, Robinson PA, Crabtree JE . (2002). ADAMs (a disintegrin and metalloproteinase) messenger RNA expression in Helicobacter pylori-infected, normal, and neoplastic gastric mucosa. J Infect Dis 185: 332–340.

    CAS  PubMed  Google Scholar 

  • Zhang K, Kaufman RJ . (2008). From endoplasmic-reticulum stress to the inflammatory response. Nature 454: 455–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Oliver P, Lancaster JJ, Schwarzenberger PO, Joshi MS, Cork J et al. (2001). Reactive oxygen species mediate tumor necrosis factor alpha-converting, enzyme-dependent ectodomain shedding induced by phorbol myristate acetate. FASEB J 15: 303–305.

    CAS  PubMed  Google Scholar 

  • Zheng X, Jiang F, Katakowski M, Zhang ZG, Lu QE, Chopp M . (2009). ADAM17 promotes breast cancer cell malignant phenotype through EGFR-PI3K-AKT activation. Cancer Biol Ther 8: 1045–1054.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Merel Gijsen, Francesca Buffa and Ji-Liang Li for help with tumor sample preparation, bioinformatics and xenograft work. This work was supported by EU 7th FP 222471 Metoxia, DFG GO709/4-4 and Fondation Leducq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Görlach.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rzymski, T., Petry, A., Kračun, D. et al. The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene 31, 3621–3634 (2012). https://doi.org/10.1038/onc.2011.522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.522

Keywords

This article is cited by

Search

Quick links