Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer

Abstract

The androgen receptor (AR) signaling pathway is involved in the emergence of castration-resistant prostate cancer (CRPC). Here, we identified several androgen-regulated microRNAs (miRNAs) that may contribute to the development of CRPC. Seven miRNAs, miR-21, miR-32, miR-99a, miR-99b, miR-148a, miR-221 and miR-590-5p, were found to be differentially expressed in CRPC compared with benign prostate hyperplasia (BPH) according to microarray analyses. Significant growth advantage for LNCaP cells transfected with pre-miR-32 and pre-miR-148a was found. miR-32 was demonstrated to reduce apoptosis, whereas miR-148a enhanced proliferation. Androgen regulation of miR-32 and miR-148a was confirmed by androgen stimulation of the LNCaP cells followed by expression analyses. The AR-binding sites in proximity of these miRNAs were demonstrated with chromatin immunoprecipitation (ChIP). To identify target genes for the miRNAs, mRNA microarray analyses were performed with LNCaP cells transfected with pre-miR-32 and pre-miR-148a. Expression of BTG2 and PIK3IP1 was reduced in the cells transfected with pre-miR-32 and pre-miR-148a, respectively. Also, the protein expression was reduced according to western blot analysis. BTG2 and PIK3IP1 were confirmed to be targets by 3′UTR-luciferase assays. Finally, immunostainings showed a statistically significant (P<0.0001) reduction of BTG2 protein in CRPCs compared with untreated prostate cancer (PC). The lack of BTG2 staining was also associated (P<0.01) with a short progression-free time in patients who underwent prostatectomy. In conclusion, androgen-regulated miR-32 is overexpressed in CRPC, leading to reduced expression of BTG2. Thus, miR-32 is a potential marker for aggressive disease and is a putative drug target in PC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F et al. (2008). Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68: 6162–6170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S et al. (2008). Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 26: 4563–4571.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C, Wang H, Xu Y, Chen S, Balk SP . (2009). Reactivation of androgen receptor-regulated TMPRSS2:ERG gene expression in castration-resistant prostate cancer. Cancer Res 69: 6027–6032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–39.

    Article  PubMed  Google Scholar 

  • Courtney KD, Corcoran RB, Engelman JA . (2010). The PI3K pathway as drug target in human cancer. J Clin Oncol 28: 1075–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Leva G, Croce CM . (2010). Roles of small RNAs in tumor formation. Trends Mol Med 16: 257–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards J, Krishna NS, Grigor KM, Bartlett JM . (2003). Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 89: 552–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman BJ, Feldman D . (2001). The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Ficazzola MA, Fraiman M, Gitlin J, Woo K, Melamed J, Rubin MA et al. (2001). Antiproliferative B cell translocation gene 2 protein is down-regulated post-transcriptionally as an early event in prostate carcinogenesis. Carcinogenesis 22: 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP . (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A et al. (2010). MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 285: 19076–19084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP . (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JW, Ryu MS, Lim IK . (2005). Phosphorylation of serine 147 of tis21/BTG2/pc3 by p-Erk1/2 induces Pin-1 binding in cytoplasm and cell death. J Biol Chem 280: 21256–21263.

    Article  CAS  PubMed  Google Scholar 

  • Hu XD, Meng QH, Xu JY, Jiao Y, Ge CM, Jacob A et al. (2011). BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity. Biochem Biophys Res Commun 404: 903–909.

    Article  CAS  PubMed  Google Scholar 

  • Jalava SE, Porkka KP, Rauhala HE, Isotalo J, Tammela TL, Visakorpi T . (2009). TCEB1 promotes invasion of prostate cancer cells. Int J Cancer 124: 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Karvonen U, Kallio PJ, Jänne OA, Palvimo JJ . (1997). Interaction of androgen receptors with androgen response element in intact cells. J Biol Chem 272: 15973–15979.

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman WP, Plasterk RH . (2006). The diverse functions of microRNAs in animal development and disease. Dev Cell 11: 441–450.

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL . (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leinonen KA, Tolonen TT, Bracken H, Stenman UH, Tammela TL, Saramäki OR et al. (2010). Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer. Clin Cancer Res 16: 2845–2851.

    Article  CAS  PubMed  Google Scholar 

  • Linja MJ, Savinainen KJ, Saramäki OR, Tammela TL, Vessella RL, Visakorpi T . (2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61: 3550–3555.

    CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJLH, Møller S, Trapman J et al. (2011). Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 31: 978–991.

    Article  PubMed  Google Scholar 

  • Massard C, Fizazi K . (2011). Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 17: 3876–3883.

    Article  CAS  PubMed  Google Scholar 

  • Möllerström E, Kovács A, Lövgren K, Nemes S, Delle U, Danielsson A et al. (2010). Up-regulation of cell cycle arrest protein BTG2 correlates with increased overall survival in breast cancer, as detected by immunohistochemistry using tissue microarray. BMC Cancer 10: 296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K et al. (2010). miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 13: 356–361.

    Article  CAS  PubMed  Google Scholar 

  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T . (2007). MicroRNA expression profiling in prostate cancer. Cancer Res 67: 6130–6135.

    Article  CAS  PubMed  Google Scholar 

  • Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH et al. (2009). miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 69: 7165–7169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A et al. (2011). Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 30: 3962–3976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB . (2008). Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320: 1643–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saramäki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, Visakorpi T . (2008). TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin Cancer Res 14: 3395–3400.

    Article  PubMed  Google Scholar 

  • Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al. (2010). Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126: 1166–1176.

    CAS  PubMed  Google Scholar 

  • Scher HI, Sawyers CL . (2005). Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23: 8253–8261.

    Article  CAS  PubMed  Google Scholar 

  • Spahn M, Kneitz S, Scholz CJ, Stenger N, Rüdiger T, Ströbel P et al. (2010). Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127: 394–403.

    CAS  PubMed  Google Scholar 

  • Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM et al. (2006). Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66: 2815–2825.

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P . (2009). The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res 69: 3356–3363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J, Lepikhova T, Teixido-Travesa N, Whitehead MA, Palvimo JJ, Jänne OA . (2006). Small carboxyl-terminal domain phosphatase 2 attenuates androgen-dependent transcription. EMBO J 25: 2757–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA et al. (2009). ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 56: 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Urbanucci A, Sahu B, Seppälä J, Larjo A, Latonen LM, Waltering KK et al. (2011). Overexpression of androgen receptor enhances the binding of the receptor to the chromatin. Oncogene 31: 2153–2163.

    Article  PubMed  Google Scholar 

  • Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C et al. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9: 401–406.

    Article  CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Jänne OA et al. (2009). Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 69: 8141–8149.

    Article  CAS  PubMed  Google Scholar 

  • Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM et al. (2010). Androgen regulation of micro-RNAs in prostate cancer. Prostate 71: 604–614.

    Article  PubMed  Google Scholar 

  • Winkler GS . (2010). The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222: 66–72.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, He X, Johnson C, Stoops J, Eaker AE, Stoffer DS et al. (2007). PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein. Biochem Biophys Res Commun 358: 66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Mariitta Vakkuri, Ms Päivi Martikainen and Mr Rolle Rahikainen for skillful technical assistance. The research leading to these results was funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. HEALTH-F2-2007-201438. In addition, grant support has been received from the Academy of Finland, the Cancer Society of Finland, the Reino Lahtikari Foundation, the Sigrid Juselius Foundation and the Medical Research Fund of Tampere University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Visakorpi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalava, S., Urbanucci, A., Latonen, L. et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 31, 4460–4471 (2012). https://doi.org/10.1038/onc.2011.624

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.624

Keywords

This article is cited by

Search

Quick links