Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The PKCθ pathway participates in the aberrant accumulation of Fra-1 protein in invasive ER-negative breast cancer cells

Abstract

Fra-1 is aberrantly expressed in a large number of cancer cells and tissues, and emerging evidence suggests an important role for this Fos family protein in both oncogenesis and the progression or maintenance of many tumour types. Here, we show that the concentration of Fra-1 is high in invasive oestrogen receptor (ER)-negative (ER−) breast cancer cell lines, regardless of their Ras pathway status. All of the ER− cells express high levels of activated PKCθ, and the inhibition of PKCθ activity using RNA interference or the expression of a dominant-negative mutant results in a dramatic reduction in Fra-1 abundance. Conversely, the ectopic expression of constitutively active PKCθ leads to Fra-1 phosphorylation and accumulation in poorly invasive ER+ cells. This accumulation is due to the stabilisation of the Fra-1 protein through PKCθ signalling, whereas other members of the PKC family are ineffective. Both Ste20-related proline-alanine-rich kinase (SPAK) and ERK1/2, whose activities are upregulated by PKCθ, participate in PKCθ-driven Fra-1 stabilisation. Interestingly, their relative contributions appear to be different depending on the cell line studied. ERK1/2 signalling has a major role in ER− MDA-MB-231 cells, whereas Fra-1 accumulation occurs mainly through SPAK signalling in ER− BT549 cells. Fra-1 mutational analysis shows that the phosphorylation of S265, T223 and T230 is critical for PKCθ-driven Fra-1 stabilisation. Phosphorylation of the protein was confirmed using specific antisera against Fra-1 phosphorylated on T223 or S265. In addition, Fra-1 participates in PKCθ-induced cell invasion and is necessary for PKCθ-induced cell migration. In summary, we identified PKCθ signalling as an important regulator of Fra-1 accumulation in ER− breast cancer cells. Moreover, our results suggest that PKCθ could participate in progression of some breast cancers and could be a new therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shaulian E, Karin M . AP-1 in cell proliferation and survival. Oncogene 2001; 20: 2390–2400.

    Article  CAS  Google Scholar 

  2. Eferl R, Wagner EF . AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3: 859–868.

    Article  CAS  Google Scholar 

  3. Young MR, Colburn NH . Fra-1 a target for cancer prevention or intervention. Gene 2006; 379: 1–11.

    Article  CAS  Google Scholar 

  4. Verde P, Casalino L, Talotta F, Yaniv M, Weitzman JB . Deciphering AP-1 function in tumorigenesis: fra-ternizing on target promoters. Cell Cycle 2007; 6: 2633–2639.

    Article  CAS  Google Scholar 

  5. Mechta F, Lallemand D, Pfarr CM, Yaniv M . Transformation by ras modifies AP1 composition and activity. Oncogene 1997; 14: 837–847.

    Article  CAS  Google Scholar 

  6. Vallone D, Battista S, Pierantoni GM, Fedele M, Casalino L, Santoro M et al. Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product. EMBO J 1997; 16: 5310–5321.

    Article  CAS  Google Scholar 

  7. Kustikova O, Kramerov D, Grigorian M, Berezin V, Bock E, Lukanidin E et al. Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells. Mol Cell Biol 1998; 18: 7095–7105.

    Article  CAS  Google Scholar 

  8. Risse-Hackl G, Adamkiewicz J, Wimmel A, Schuermann M . Transition from SCLC to NSCLC phenotype is accompanied by an increased TRE-binding activity and recruitment of specific AP-1 proteins. Oncogene 1998; 16: 3057–3068.

    Article  CAS  Google Scholar 

  9. Belguise K, Kersual N, Galtier F, Chalbos D . FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells. Oncogene 2005; 24: 1434–1444.

    Article  CAS  Google Scholar 

  10. Vial E, Sahai E, Marshall CJ . ERK-MAPK signalling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 2003; 4: 67–79.

    Article  CAS  Google Scholar 

  11. Debinski W, Gibo DM . Fos-related antigen 1 modulates malignant features of glioma cells. Mol Cancer Res 2005; 3: 237–249.

    CAS  Google Scholar 

  12. Sayan AE, Stanford R, Vickery R, Grigorenko E, Diesch J, Kulbicki K et al. Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL. Oncogene 2012; 31: 1493–1503.

    Article  CAS  Google Scholar 

  13. Philips A, Teyssier C, Galtier F, Rivier-Covas C, Rey JM, Rochefort H et al. FRA-1 expression level modulates regulation of activator protein-1 activity by estradiol in breast cancer cells. Mol Endocrinol 1998; 12: 973–985.

    Article  CAS  Google Scholar 

  14. Milde-Langosch K, Kappes H, Riethdorf S, Loning T, Bamberger AM . FosB is highly expressed in normal mammary epithelia, but down-regulated in poorly differentiated breast carcinomas. Breast Cancer Res Treat 2003; 77: 265–275.

    Article  CAS  Google Scholar 

  15. Song Y, Song S, Zhang D, Zhang Y, Chen L, Qian L et al. An association of a simultaneous nuclear and cytoplasmic localization of Fra-1 with breast malignancy. BMC Cancer 2006; 6: 298–304.

    Article  Google Scholar 

  16. Chiappetta G, Ferraro A, Botti G, Monaco M, Pasquinelli R, Vuttariello E et al. FRA-1 protein overexpression is a feature of hyperplastic and neoplastic breast disorders. BMC Cancer 2007; 7: 17–28.

    Article  Google Scholar 

  17. Logullo AF, Stiepcich MM, Osorio CA, Nonogaki S, Pasini FS, Rocha RM et al. Role of Fos-related antigen 1 in the progression and prognosis of ductal breast carcinoma. Histopathology 2011; 58: 617–625.

    Article  Google Scholar 

  18. Wang Q, Ni H, Lan L, Wei X, Xiang R, Wang Y . Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res 2010; 20: 701–712.

    Article  CAS  Google Scholar 

  19. Casalino L, De Cesare D, Verde P . Accumulation of Fra-1 in ras-transformed cells depends on both transcriptional autoregulation and MEK-dependent posttranslational stabilisation. Mol Cell Biol 2003; 23: 4401–4415.

    Article  CAS  Google Scholar 

  20. Vial E, Marshall CJ . Elevated ERK-MAP kinase activity protects the FOS family member FRA-1 against proteasomal degradation in colon carcinoma cells. J Cell Sci 2003; 116: 4957–4963.

    Article  CAS  Google Scholar 

  21. Basbous J, Chalbos D, Hipskind R, Jariel-Encontre I, Piechaczyk M . Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabiliser. Mol Cell Biol 2007; 27: 3936–3950.

    Article  CAS  Google Scholar 

  22. Harris TJ, McCormick F . The molecular pathology of cancer. Nat Rev Clin Oncol 2010; 7: 251–265.

    Article  CAS  Google Scholar 

  23. Hayashi K, Altman A . Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res 2007; 55: 537–544.

    Article  CAS  Google Scholar 

  24. Marsland BJ, Kopf M . T-cell fate and function: PKC-theta and beyond. Trends Immunol 2008; 29: 179–185.

    Article  CAS  Google Scholar 

  25. Blay P, Astudillo A, Buesa JM, Campo E, Abad M, Garcia-Garcia J et al. Protein kinase C theta is highly expressed in gastrointestinal stromal tumors but not in other mesenchymal neoplasias. Clin Cancer Res 2004; 10: 4089–4095.

    Article  CAS  Google Scholar 

  26. Belguise K, Sonenshein GE . PKCtheta promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor alpha synthesis. J Clin Invest 2007; 117: 4009–4021.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365: 671–679.

    Article  CAS  Google Scholar 

  28. Li Y, Hu J, Vita R, Sun B, Tabata H, Altman A . SPAK kinase is a substrate and target of PKCtheta in T-cell receptor-induced AP-1 activation pathway. EMBO J 2004; 23: 1112–1122.

    Article  CAS  Google Scholar 

  29. Hollestelle A, Elstrodt F, Nagel JH, Kallemeijn WW, Schutte M . Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol Cancer Res 2007; 5: 195–201.

    Article  CAS  Google Scholar 

  30. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  Google Scholar 

  31. Delpire E, Gagnon KB . Genome-wide analysis of SPAK/OSR1 binding motifs. Physiol Genomics 2007; 28: 223–231.

    Article  CAS  Google Scholar 

  32. Piechotta K, Lu J, Delpire E . Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem 2002; 277: 50812–50819.

    Article  CAS  Google Scholar 

  33. Polek TC, Talpaz M, Spivak-Kroizman T . The TNF receptor, RELT, binds SPAK and uses it to mediate p38 and JNK activation. Biochem Biophys Res Commun 2006; 343: 125–134.

    Article  CAS  Google Scholar 

  34. Manicassamy S, Gupta S, Sun Z . Selective function of PKC-theta in T cells. Cell Mol Immunol 2006; 3: 263–270.

    CAS  PubMed  Google Scholar 

  35. Chuang HC, Lan JL, Chen DY, Yang CY, Chen YM, Li JP et al. The kinase GLK controls autoimmunity and NF-κB signaling by activating the kinase PKC-θ in T cells. Nat Immunol 2011; 12: 1113–1118.

    Article  CAS  Google Scholar 

  36. Elsberger B, Fullerton R, Zino S, Jordan F, Mitchell TJ, Brunton VG et al. Breast cancer patients’ clinical outcome measures are associated with Src kinase family member expression. Br J Cancer 2010; 103: 899–909.

    Article  CAS  Google Scholar 

  37. Maurer M, Su T, Saal LH, Koujak S, Hopkins BD, Barkley CR et al. 3-Phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma. Cancer Res 2009; 69: 6299–6306.

    Article  CAS  Google Scholar 

  38. Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F et al. Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 2007; 9: 470–478.

    Article  CAS  Google Scholar 

  39. Chen H, Zhu G, Li Y, Padia RN, Dong Z, Pan ZK et al. Extracellular signal-regulated kinase signalling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 2009; 69: 9228–9235.

    Article  CAS  Google Scholar 

  40. Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis J . ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signalling events. Mol Cell 2010; 38: 114–127.

    Article  CAS  Google Scholar 

  41. Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C et al. TRPS1 Targeting by miR-221/222 Promotes the Epithelial-to-Mesenchymal Transition in Breast Cancer. Sci Signal 2011; 4: ra41.

    Article  Google Scholar 

  42. Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV et al. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell 2009; 35: 511–522.

    Article  CAS  Google Scholar 

  43. Baier-Bitterlich G, Uberall F, Bauer B, Fresser F, Wachter H, Grunicke H et al. Protein kinase C-theta isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes. Mol Cell Biol 1996; 16: 1842–1850.

    Article  CAS  Google Scholar 

  44. Brunet A, Pages G, Pouyssegur J . Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene 1994; 9: 3379–3387.

    CAS  Google Scholar 

  45. Mulloy R, Salinas S, Philips A, Hipskind RA . Activation of cyclin D1 expression by the ERK5 cascade. Oncogene 2003; 22: 5387–5398.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A Altman, J Pouyssegur and A Hipskind for providing plasmids and I Jariel-Encontre for critical reading of the manuscript. This work was supported by the ‘Institut National de la Santé et de la Recherche Médicale’, the University of Montpellier 1, the ‘Ligue Nationale Contre le Cancer-comité de l’Hérault’, the ‘Association pour la Recherche sur le Cancer’ (fellowship to K. Belguise) and the French ″Ministère de la Recherche et de l′Enseignement Supérieur ’(fellowship to S. Milord). M. Piechaczyk's laboratory was supported as an‘ Equipe Labellisée ’of the ‘Ligue Nationale Contre le Cancer’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Chalbos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belguise, K., Milord, S., Galtier, F. et al. The PKCθ pathway participates in the aberrant accumulation of Fra-1 protein in invasive ER-negative breast cancer cells. Oncogene 31, 4889–4897 (2012). https://doi.org/10.1038/onc.2011.659

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.659

Keywords

This article is cited by

Search

Quick links