Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction

Abstract

Epithelial-to-mesenchymal transition (EMT) is closely linked to conversion of early-stage tumours into invasive malignancies. Many signalling pathways are involved in EMT, but the key regulatory kinases in this important process have not been clearly identified. Protein kinase CK2 is a multi-subunit protein kinase, which, when overexpressed, has been linked to disease progression and poor prognosis in various cancers. Specifically, overexpression of CK2α in human breast cancers is correlated with metastatic risk. In this article, we show that an imbalance of CK2 subunits reflected by a decrease in the CK2β regulatory subunit in a subset of breast tumour samples is correlated with induction of EMT-related markers. CK2β-depleted epithelial cells displayed EMT-like morphological changes, enhanced migration, and anchorage-independent growth, all of which require Snail1 induction. In epithelial cells, Snail1 stability is negatively regulated by CK2 and GSK3β through synergistic hierarchal phosphorylation. This process depends strongly on CK2β, thus confirming that CK2 functions upstream of Snail1. In primary breast tumours, CK2β underexpression also correlates strongly with expression of EMT markers, emphasizing the link between asymmetric expression of CK2 subunits and EMT in vivo. Our results therefore highlight the importance of CK2β in controlling epithelial cell plasticity. They show that CK2 holoenzyme activity is essential to suppress EMT, and that it contributes to maintaining a normal epithelial morphology. This study also suggests that unbalanced expression of CK2 subunits may drive EMT, thereby contributing to tumour progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Savagner P . Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 2001; 23: 912–923.

    Article  CAS  PubMed  Google Scholar 

  2. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  3. Moustakas A, Heldin CH . Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 2007; 98: 1512–1520.

    Article  CAS  PubMed  Google Scholar 

  4. Thiery JP . Cell adhesion in development: a complex signaling network. Curr Opin Genet Dev 2003; 13: 365–371.

    Article  CAS  PubMed  Google Scholar 

  5. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 2008; 3: e2888.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 2009; 28: 2940–2947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gort EH, Groot AJ, van der Wall E, van Diest PJ, Vooijs MA . Hypoxic regulation of metastasis via hypoxia-inducible factors. Curr Mol Med 2008; 8: 60–67.

    Article  CAS  PubMed  Google Scholar 

  9. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    CAS  PubMed  Google Scholar 

  10. Moustakas A, Heldin CH . Non-Smad TGF-beta signals. J Cell Sci 2005; 118 (Part 16) 3573–3584.

    Article  CAS  PubMed  Google Scholar 

  11. Peinado H, Olmeda D, Cano A . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  12. de Herreros AG, Peiro S, Nassour M, Savagner P . Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 2010; 15: 135–147.

    Article  PubMed  PubMed Central  Google Scholar 

  13. MacPherson MR, Molina P, Souchelnytskyi S, Wernstedt C, Martin-Perez J, Portillo F et al. Phosphorylation of serine 11 and serine 92 as new positive regulators of human Snail1 function: potential involvement of casein kinase-2 and the cAMP-activated kinase protein kinase A. Mol Biol Cell 2010; 21: 244–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cochet C, Chambaz EM . Oligomeric structure and catalytic activity of G type casein kinase. Isolation of the two subunits and renaturation experiments. J Biol Chem 1983; 258: 1403–1406.

    CAS  PubMed  Google Scholar 

  15. Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB et al. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 2003; 23: 908–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Filhol O, Nueda A, Martel V, Gerber-Scokaert D, Benitez MJ, Souchier C et al. Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol 2003; 23: 975–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filhol O, Cochet C . Protein kinase CK2 in health and disease: Cellular functions of protein kinase CK2: a dynamic affair. Cell Mol Life Sci 2009; 66: 1830–1839.

    Article  CAS  PubMed  Google Scholar 

  18. Gyenis L, Litchfield DW . The emerging CK2 interactome: insights into the regulation and functions of CK2. Mol Cell Biochem 2008; 316: 5–14.

    Article  CAS  PubMed  Google Scholar 

  19. Huillard E, Ziercher L, Blond O, Wong M, Deloulme JC, Souchelnytskyi S et al. Disruption of CK2beta in embryonic neural stem cells compromises proliferation and oligodendrogenesis in the mouse telencephalon. Mol Cell Biol 2010; 30: 2737–2749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poletto G, Vilardell J, Marin O, Pagano MA, Cozza G, Sarno S et al. The regulatory beta subunit of protein kinase CK2 contributes to the recognition of the substrate consensus sequence. A study with an eIF2beta-derived peptide. Biochemistry 2008; 47: 8317–8325.

    Article  CAS  PubMed  Google Scholar 

  21. Canton DA, Litchfield DW . The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 2006; 18: 267–275.

    Article  CAS  PubMed  Google Scholar 

  22. Deshiere A, Theis-Febvre N, Martel V, Cochet C, Filhol O . Protein kinase CK2 and cell polarity. Mol Cell Biochem 2008; 316: 107–113.

    Article  CAS  PubMed  Google Scholar 

  23. Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q et al. EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol Cell 2009; 36: 547–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lilien J, Balsamo J . The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 2005; 17: 459–465.

    Article  CAS  PubMed  Google Scholar 

  25. Bek S, Kemler R . Protein kinase CKII regulates the interaction of beta-catenin with alpha-catenin and its protein stability. J Cell Sci 2002; 115 (Part 24) 4743–4753.

    Article  CAS  PubMed  Google Scholar 

  26. Wu H, Symes K, Seldin DC, Dominguez I . Threonine 393 of beta-catenin regulates interaction with Axin. J Cell Biochem 2009; 108: 52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC . Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 2001; 20: 3247–3257.

    Article  CAS  PubMed  Google Scholar 

  28. Rozanov DV, Savinov AY, Williams R, Liu K, Golubkov VS, Krajewski S et al. Molecular signature of MT1-MMP: transactivation of the downstream universal gene network in cancer. Cancer Res 2008; 68: 4086–4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giusiano S, Cochet C, Filhol O, Duchemin-Pelletier E, Secq V, Bonnier P et al. Protein kinase CK2alpha subunit over-expression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays. Eur J Cancer 2011; 47: 792–801.

    Article  CAS  PubMed  Google Scholar 

  30. Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE . Protein kinase CK2 promotes aberrant activation of nuclear factor-kappaB, transformed phenotype, and survival of breast cancer cells. Cancer Res 2002; 62: 6770–6778.

    CAS  PubMed  Google Scholar 

  31. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002; 21: 3241–3246.

    Article  CAS  PubMed  Google Scholar 

  32. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 2008; 68: 937–945.

    Article  CAS  PubMed  Google Scholar 

  33. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 2009; 69: 4116–4124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 2006; 25: 2273–2284.

    Article  CAS  PubMed  Google Scholar 

  35. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–997.

    Article  CAS  PubMed  Google Scholar 

  36. Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Forcet C, Cochet C et al. Regulation of epithelial to mesenchymal transition:CK2β on stage. Mol Cell Biochem 2011; 316: 107–113.

    Article  Google Scholar 

  37. Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK et al. Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 2004; 101: 1257–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peinado H, Quintanilla M, Cano A . Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003; 278: 21113–21123.

    Article  CAS  PubMed  Google Scholar 

  39. Bibby AC, Litchfield DW . The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci 2005; 1: 67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  41. Xu Y, Lee SH, Kim HS, Kim NH, Piao S, Park SH et al. Role of CK1 in GSK3beta-mediated phosphorylation and degradation of Snail. Oncogene 2010; 29: 3124–3133.

    Article  CAS  PubMed  Google Scholar 

  42. Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Traish AM, Mercurio F, Sonenshein GE . Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-kappaB in breast cancer. Cancer Res 2001; 61: 3810–3818.

    CAS  PubMed  Google Scholar 

  43. Mottet D, Ruys SP, Demazy C, Raes M, Michiels C . Role for casein kinase 2 in the regulation of HIF-1 activity. Int J Cancer 2005; 117: 764–774.

    Article  CAS  PubMed  Google Scholar 

  44. Pluemsampant S, Safronova OS, Nakahama K, Morita I . Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumours. Int J Cancer 2008; 122: 333–341.

    Article  CAS  PubMed  Google Scholar 

  45. Hill RP, Marie-Egyptienne DT, Hedley DW . Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 2009; 19: 106–111.

    Article  PubMed  Google Scholar 

  46. Simpson KJ, Selfors LM, Bui J, Reynolds A, Leake D, Khvorova A et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol 2008; 10: 1027–1038.

    Article  CAS  PubMed  Google Scholar 

  47. de Herreros AG, Peiro S, Nassour M, Savagner P . Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 2010; 15: 135–147.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM . Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 2005; 168: 29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010; 107: 15449–15454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bissell MJ, Hines WC . Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011; 17: 320–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bussard KM, Boulanger CA, Booth BW, Bruno RD, Smith GH . Reprogramming human cancer cells in the mouse mammary gland. Cancer Res 2010; 70: 6336–6343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  53. Laramas M, Pasquier D, Filhol O, Ringeisen F, Descotes JL, Cochet C . Nuclear localization of protein kinase CK2 catalytic subunit (CK2alpha) is associated with poor prognostic factors in human prostate cancer. Eur J Cancer 2007; 43: 928–934.

    Article  CAS  PubMed  Google Scholar 

  54. Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S et al. Regulation of Snail transcription during epithelial to mesenchymal transition of tumour cells. Oncogene 2004; 23: 7345–7354.

    Article  CAS  PubMed  Google Scholar 

  55. Charpin C, Secq V, Giusiano S, Carpentier S, Andrac L, Lavaut MN et al. A signature predictive of disease outcome in breast carcinomas, identified by quantitative immunocytochemical assays. Int J Cancer 2009; 124: 2124–2134.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by recurrent institutional funding from INSERM, CEA, Ligue Nationale contre le Cancer (accredited team 2010-2012), UJF, and grants from the French National Research Agency (PCV-08 CoCCINet), ARC. We thank L Larue and BP Zhou for promoter reporter constructs, AG de Herreros for Snail1 antibody, M Théry and S Ansieau for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Filhol.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshiere, A., Duchemin-Pelletier, E., Spreux, E. et al. Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene 32, 1373–1383 (2013). https://doi.org/10.1038/onc.2012.165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.165

Keywords

This article is cited by

Search

Quick links