Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects

Abstract

Understanding the complexity of cancer and of the underlying regulatory networks provides a new paradigm that tackles cancer development and treatment through a system biology approach, contemporarily acting on various intersecting pathways. Cancer cell metabolism is an old pathogenetic issue that has recently gained new interest as target for therapeutic approaches. More than 70 years ago, Warburg discovered that malignant cells generally have altered metabolism with high rates of glucose uptake and increased glycolysis, even under aerobic condition. Observational studies have provided evidence that impaired metabolism, obesity, hyperglycemia and hyperinsulinemia may have a role in cancer development, progression and prognosis, and actually diabetic and obese patients have increased cancer risk. On the other hand, caloric restriction has been shown to prolong life span and reduce cancer incidence in several animal models, having an impact on different metabolic pathways. Metformin, an antidiabetic drug widely used for over 40 years, mimics caloric restriction acting on cell metabolism at multiple levels, reducing all energy-consuming processes in the cells, including cell proliferation. By overviewing molecular mechanisms of action, epidemiological evidences, experimental data in tumor models and early clinical study results, this review provides information supporting the promising use of metformin in cancer prevention and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  2. Fontana L, Partridge L, Longo VD . Extending healthy life span-from yeast to humans. Science 2010; 328: 321–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hursting SD, Lashinger LM, Colbert LH, Rogers CJ, Wheatley KW, Nunez NP et al. Energy balance and carcinogenesis: underlying pathways and targets for intervention. Curr Cancer Drug Targets 2007; 7: 484–491.

    Article  CAS  PubMed  Google Scholar 

  4. Fontana L, Klein S . Aging, adiposity, and calorie restriction. JAMA 2007; 297: 986–994.

    Article  CAS  PubMed  Google Scholar 

  5. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325: 201–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Campbell IW, Ritz P . Understanding the glucose-lowering actions of metformin. In: Bailey CJ, Campbell IW, Chan JCN, Davidson JA, Howlett HCS, Ritz P (eds) Metformin the Gold Standard. John Wiley & Sons, Ltd, Chichester, UK, 2007, pp 77–88.

    Google Scholar 

  7. Detaille D, Guigas B, Leverve X, Wiernsperger N, Devos P . Obligatory role of membrane events in the regulatory effect of metformin on the respiratory chain function. Biochem Pharmacol 2002; 63: 1259–1272.

    Article  CAS  PubMed  Google Scholar 

  8. Giannarelli R, Aragona M, Coppelli A, Del Prato S . Reducing insulin resistance with metformin: the evidence today. Diabetes Metab 2003; 29: 6S28–6S35.

    Article  CAS  PubMed  Google Scholar 

  9. Matthaei S, Reibold JP, Hamann A, Benecke H, Häring HU, Greten H et al. In vivo metformin treatment ameliorates insulin resistance: evidence for potentiation of insulin-induced translocation and increased functional activity of glucose transporters in obese (fa/fa) Zucker rat adipocytes. Endocrinology 1993; 133: 304–311.

    Article  CAS  PubMed  Google Scholar 

  10. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA et al. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33: 1674–1685.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R . Diabetes and cancer. Endocr Relat Cancer. 2009; 16: 1103–1123.

    Article  CAS  PubMed  Google Scholar 

  12. Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 2008; 300: 2754–2764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Basen-Engquist K, Chang M . Obesity and cancer risk: recent review and evidence. Curr Oncol Rep 2011; 13: 71–76.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M . Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008; 371: 569–578.

    Article  PubMed  Google Scholar 

  15. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD . Metformin and reduced risk of cancer in diabetic patients. BMJ 2005; 330: 1304–1305.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bowker SL, Yasui Y, Veugelers P, Johnson JA . Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure. Diabetologia 2010; 53: 1631–1637.

    Article  CAS  PubMed  Google Scholar 

  17. Home PD, Kahn SE, Jones NP, Noronha D, Beck-Nielsen H, Viberti G . Experience of malignancies with oral glucose-lowering drugs in the randomised controlled ADOPT (A Diabetes Outcome Progression Trial) and RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes and Regulation of Glycaemia in Diabetes) clinical trials. Diabetologia 2010; 53: 1838–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Currie CJ, Poole CD, Gale EA . The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009; 52: 1766–1777.

    Article  CAS  PubMed  Google Scholar 

  19. Monami M, Colombi C, Balzi D, Dicembrini I, Giannini S, Melani C et al. Metformin and cancer occurrence in insulin-treated type 2 diabetic patients. Diabetes Care 2011; 34: 129–131.

    Article  PubMed  Google Scholar 

  20. Monami M, Lamanna C, Balzi D, Marchionni N, Mannucci E . Sulphonylureas and cancer: a case-control study. Acta Diabetol. 2009; 46: 279–284.

    Article  CAS  PubMed  Google Scholar 

  21. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM . New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 2009; 32: 1620–1625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Landman GW, Kleefstra N, van Hateren K, Groenier K, Gans RO, Bilo HJ . Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 2010; 33: 322–326.

    Article  CAS  PubMed  Google Scholar 

  23. Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC . Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer 2011; 11: 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bodmer M, Meier C, Krahenbuhl S, Jick SS, Meier CR . Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care 2010; 33: 1304–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bosco JL, Antonsen S, Sorensen HT, Pedersen L, Lash TL . Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. Cancer Epidemiol Biomarkers Prev 2011; 20: 101–111.

    Article  CAS  PubMed  Google Scholar 

  26. Oliveria SA, Koro CE, Yood MU, Sowell M . Cancer incidence among patients treated with antidiabetic pharmacotherapy. Diabetes Metabol Syndr 2008; 2: 47–57.

    Article  Google Scholar 

  27. Bodmer M, Becker C, Meier C, Jick SS, Meier CR . Use of metformin is not associated with a decreased risk of colorectal cancer: a case-control analysis. Cancer Epidemiol Biomarkers Prev 2012; 21: 280–286.

    Article  CAS  PubMed  Google Scholar 

  28. Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL . Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 2009; 137: 482–488.

    Article  PubMed  Google Scholar 

  29. Bodmer M, Becker C, Meier C, Jick SS, Meier CR . Use of antidiabetic agents and the risk of pancreatic cancer: a case-control analysis. Am J Gastroenterol 2012; 107: 620–626.

    Article  CAS  PubMed  Google Scholar 

  30. Donadon V, Balbi M, Ghersetti M, Grazioli S, Perciaccante A, Della Valentina G et al. Antidiabetic therapy and increased risk of hepatocellular carcinoma in chronic liver disease. World J Gastroenterol 2009; 15: 2506–2511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 2009; 27: 3297–3302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL . Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care 2012; 35: 299–304.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Garrett CR, Hassabo HM, Bhadkamkar NA, Wen S, Baladandayuthapani V, Kee BK et al. Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. Br J Cancer 2012; 106: 1374–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Martin-Castillo B, Menendez JA . Metformin and energy metabolism in breast cancer: from insulin physiology to tumour-initiating stem cells. Curr Mol Med 2010; 10: 674–691.

    Article  CAS  PubMed  Google Scholar 

  35. Hardie DG . AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8: 774–785.

    Article  CAS  PubMed  Google Scholar 

  36. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M . Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 2006; 66: 10269–10273.

    Article  CAS  PubMed  Google Scholar 

  37. Goodwin PJ, Pritchard KI, Ennis M, Clemons M, Graham M, Fantus IG . Insulin-lowering effects of metformin in women with early breast cancer. Clin Breast Cancer 2008; 8: 501–505.

    Article  CAS  PubMed  Google Scholar 

  38. Goodwin PJ, Stambolic V, Lemieux J, Chen BE, Parulekar WR, Gelmon KA et al. Evaluation of metformin in early breast cancer: a modification of the traditional paradigm for clinical testing of anti-cancer agents. Breast Cancer Res Treat 2011; 126: 215–220.

    Article  CAS  PubMed  Google Scholar 

  39. Pollak M . Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008; 8: 915–928.

    Article  CAS  PubMed  Google Scholar 

  40. Hosono K, Endo H, Takahashi H, Sugiyama M, Sakai E, Uchiyama T et al. Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res (Phila) 2010; 3: 1077–1083.

    Article  CAS  Google Scholar 

  41. Muti P, Berrino F, Krogh V, Villarini A, Barba M, Strano S et al. Metformin, diet and breast cancer: an avenue for chemoprevention. Cell Cycle 2009; 8: 2661.

    Article  CAS  PubMed  Google Scholar 

  42. Martin-Castillo B, Dorca J, Vazquez-Martin A, Oliveras-Ferraros C, Lopez-Bonet E, Garcia M et al. Incorporating the antidiabetic drug metformin in HER2-positive breast cancer treated with neo-adjuvant chemotherapy and trastuzumab: an ongoing clinical-translational research experience at the Catalan Institute of Oncology. Ann Oncol 2010; 21: 187–189.

    Article  CAS  PubMed  Google Scholar 

  43. Martin-Castillo B, Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA . Metformin and cancer: Doses, mechanisms and the dandelion and hormetic phenomena. Cell Cycle 2010; 9: 1057–1064.

    Article  CAS  PubMed  Google Scholar 

  44. Algire C, Zakikhani M, Blouin MJ, Shuai JH, Pollak M . Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endocr Relat Cancer 2008; 15: 833–839.

    Article  CAS  PubMed  Google Scholar 

  45. Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010; 11: 390–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM . Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P et al. Metformin, independent of AMPK, induces mTOR inhibition and cell cycle arrest through REDD1. Cancer Res 2011; 71: 4366–4372.

    Article  CAS  PubMed  Google Scholar 

  49. Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Martin-Castillo B, Menendez JA . Metformin activates an Ataxia Telangiectasia Mutated (ATM)/Chk2-regulated DNA damage-like response. Cell Cycle 2011; 10: 1499–1501.

    Article  CAS  PubMed  Google Scholar 

  50. GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group; Wellcome Trust Case Control Consortium 2 Zhou K, Bellenguez C, Spencer CC, Bennett AJ, Coleman RL, Tavendale R et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 2011; 43: 117–120.

    Article  CAS  Google Scholar 

  51. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D . Characterization of AMP-activated protein kinase subunit isoforms and their role in AMP binding. J Biochem 2000; 346: 659–669.

    Article  CAS  Google Scholar 

  52. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011; 472: 230–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 2011; 332: 1433–1435.

    Article  CAS  PubMed  Google Scholar 

  54. Carling D, Mayer FV, Sanders MJ, Gamblin SJ . AMP-activated protein kinase: nature's energy sensor. Nat Chem Biol 2011; 7: 512–518.

    Article  CAS  PubMed  Google Scholar 

  55. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003; 2: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003; 13: 2004–2008.

    Article  CAS  PubMed  Google Scholar 

  57. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2005; 2: 21–33.

    Article  CAS  PubMed  Google Scholar 

  58. Momcilovic M, Hong SP, Carlson M . Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 2006; 281: 25336–25343.

    Article  CAS  PubMed  Google Scholar 

  59. Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM . Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 2009; 326: 1707–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zeqiraj E, Filippi BM, Goldie S, Navratilova I, Boudeau J, Deak M et al. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor. PLoS Biol 2009; 7: e1000126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. McCarthy A, Lord CJ, Savage K, Grigoriadis A, Smith DP, Weigelt B et al. Conditional deletion of the Lkb1 gene in the mouse mammary gland induces tumour formation. J Pathol 2009; 219: 306–316.

    Article  CAS  PubMed  Google Scholar 

  62. Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H . LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 2009; 89: 777–798.

    Article  CAS  PubMed  Google Scholar 

  63. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998; 391: 184–187.

    Article  CAS  PubMed  Google Scholar 

  64. Esteller M, Avizienyte E, Corn PG, Lothe RA, Baylin SB, Aaltonen LA et al. Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene 2000; 19: 164–168.

    Article  CAS  PubMed  Google Scholar 

  65. Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 2010; 329: 1201–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim J, Guan KL . Amino acid signaling in TOR activation. Annu Rev Biochem 2011; 80: 1001–1032.

    Article  CAS  PubMed  Google Scholar 

  67. Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007; 67: 6745–6752.

    Article  CAS  PubMed  Google Scholar 

  68. Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 2010; 70: 2465–2475.

    Article  CAS  PubMed  Google Scholar 

  69. Inoki K, Zhu T, Guan KL . TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577–590.

    Article  CAS  PubMed  Google Scholar 

  70. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zakikhani M, Blouin MJ, Piura E, Pollak MN . Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 2010; 123: 271–279.

    Article  CAS  PubMed  Google Scholar 

  72. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332: 1317–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yea SS, Fruman DA . Cell signaling. New mTOR targets Grb attention. Science 2011; 332: 1270–1271.

    Article  CAS  PubMed  Google Scholar 

  74. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villén J et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332: 1322–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ning J, Clemmons DR . AMP-activated protein kinase inhibits IGF-I signaling and protein synthesis in vascular smooth muscle cells via stimulation of insulin receptor substrate 1 S794 and tuberous sclerosis 2 S1345 phosphorylation. Mol Endocrinol 2010; 24: 1218–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA . If mammalian target of metformin indirectly is mammalian target of rapamycin, then the insulin-like growth factor-1 receptor axis will audit the efficacy of metformin in cancer clinical trials. J Clin Oncol 2009; 27: e207–e209.

    Article  CAS  PubMed  Google Scholar 

  77. Rozengurt E, Sinnett-Smith J, Kisfalvi K . Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res 2010; 16: 2505–2511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E . Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 2009; 69: 6539–6545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005; 18: 283–293.

    Article  CAS  PubMed  Google Scholar 

  80. Feng Z, Zhang H, Levine AJ, Jin S . The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci US 2005; 102: 8204–8209.

    Article  CAS  Google Scholar 

  81. Galluzzi L, Kepp O, Kroemer G . TP53 and MTOR crosstalk to regulate cellular senescence. Aging (Albany NY) 2010; 2: 535–537.

    Article  CAS  Google Scholar 

  82. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G . Autophagy regulation by p53. Curr Opin Cell Biol. 2010; 22: 181–185.

    Article  CAS  PubMed  Google Scholar 

  83. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9: 218–224.

    Article  CAS  PubMed  Google Scholar 

  84. Budanov AV, Karin M . p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134: 451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 2009; 8: 1571–1576.

    Article  CAS  PubMed  Google Scholar 

  86. Leontieva OV, Gudkov AV, Blagosklonny MV . Weak p53 permits senescence during cell cycle arrest. Cell Cycle 2010; 9: 4323–4327.

    Article  CAS  PubMed  Google Scholar 

  87. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332: 966–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Algire C, Amrein L, Bazile M, David S, Zakikhani M, Pollak M . Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene 2011; 30: 1174–1182.

    Article  CAS  PubMed  Google Scholar 

  89. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007; 117: 326–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Segal ED, Yasmeena A, Beauchampa M-C, Rosenblatta J, Pollakb M, Gotlieba WH et al. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem. Biophys. Res Commun 2011; 414: 694–699.

    CAS  Google Scholar 

  91. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117: 1422–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther 2009; 86: 299–306.

    Article  CAS  PubMed  Google Scholar 

  93. Ben Sahra I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008; 27: 3576–3586.

    Article  CAS  PubMed  Google Scholar 

  94. Cantrell LA, Zhou C, Mendivil A, Malloy KM, Gehrig PA, Bae-Jump VL . Metformin is a potent inhibitor of endometrial cancer cell proliferation-implications for a novel treatment strategy. Gynecol Oncol 2010; 116: 92–98.

    Article  CAS  PubMed  Google Scholar 

  95. Gotlieb WH, Saumet J, Beauchamp MC, Gu J, Lau S, Pollak MN et al. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol Oncol 2008; 110: 246–250.

    Article  CAS  PubMed  Google Scholar 

  96. Green AS, Chapuis N, Maciel TT, Willems L, Lambert M, Arnoult C et al. The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood 2010; 116: 4262–4273.

    Article  CAS  PubMed  Google Scholar 

  97. Isakovic A, Harhaji L, Stevanovic D, Markovic Z, Sumarac-Dumanovic M, Starcevic V et al. Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cell Mol Life Sci 2007; 64: 1290–1302.

    Article  CAS  PubMed  Google Scholar 

  98. Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA . Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev Res (Phila) 2010; 3: 1066–1076.

    Article  CAS  Google Scholar 

  99. Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 2009; 8: 909–915.

    Article  CAS  PubMed  Google Scholar 

  100. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N . Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007; 67: 10804–10812.

    Article  CAS  PubMed  Google Scholar 

  101. Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 2009; 8: 2031–2040.

    Article  CAS  PubMed  Google Scholar 

  102. Phoenix KN, Vumbaca F, Claffey KP . Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Breast Cancer Res Treat 2009; 113: 101–111.

    Article  CAS  PubMed  Google Scholar 

  103. Zhuang Y, Miskimins WK . Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal 2008; 3: 18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K . Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69: 7507–7511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saito S, Furuno A, Sakurai J, Sakamoto A, Park HR, Shin-Ya K et al. Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation. Cancer Res 2009; 69: 4225–4234.

    Article  CAS  PubMed  Google Scholar 

  106. Rattan R, Graham RP, Maguire JL, Giri S, Shridhar V . Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia 2011; 13: 483–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhuang Y, Miskimins WK . Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res 2011; 9: 603–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 2005; 40: 685–693.

    Article  CAS  PubMed  Google Scholar 

  109. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 2008; 7: 2769–2773.

    Article  CAS  PubMed  Google Scholar 

  110. Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA . The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle 2009; 8: 88–96.

    Article  CAS  PubMed  Google Scholar 

  111. Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Del Barco S, Martin-Castillo B, Lopez-Bonet E et al. The anti-diabetic drug metformin suppresses the metastasis-associated protein CD24 in MDA-MB-468 triple-negative breast cancer cells. Oncol Rep 2011; 25: 135–140.

    CAS  PubMed  Google Scholar 

  112. Kakarala M, Wicha MS . Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 2008; 26: 2813–2820.

    Article  PubMed  Google Scholar 

  113. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–679.

    Article  CAS  PubMed  Google Scholar 

  114. Iliopoulos D, Hirsch HA, Struhl K . Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 2011; 71: 3196–3201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA . The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res Treat 2011; 126: 355–364.

    Article  CAS  PubMed  Google Scholar 

  116. Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Del Barco S, Martin-Castillo B, Menendez JA . Metformin regulates breast cancer stem cell ontogeny by transcriptional regulation of the epithelial-mesenchymal transition (EMT) status. Cell Cycle 2010; 9: 3807–3814.

    Article  CAS  PubMed  Google Scholar 

  117. Zakikhani M, Dowling RJ, Sonenberg N, Pollak MN . The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res (Phila) 2008; 1: 369–375.

    Article  CAS  Google Scholar 

  118. Tomimoto A, Endo H, Sugiyama M, Fujisawa T, Hosono K, Takahashi H et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci 2008; 99: 2136–2141.

    Article  CAS  PubMed  Google Scholar 

  119. Hosono K, Endo H, Takahashi H, Sugiyama M, Uchiyama T, Suzuki K et al. Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol Carcing 2010; 49: 662–671.

    Article  CAS  Google Scholar 

  120. Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M . Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer 2010; 17: 351–360.

    Article  CAS  PubMed  Google Scholar 

  121. Kourelis TV, Siegel RD . Metformin and cancer: new applications for an old drug. Med Oncol 2012; 29: 1314–1327.

    Article  CAS  PubMed  Google Scholar 

  122. Campagnoli C, Pasanisi P, Abbà C, Ambroggio S, Biglia N, Brucato T et al. Effect of different doses of Metformin on serum testosterone and insulin in non-diabetic breast cancer patients: a randomized study. Clinical Breast Cancer 2012; 12: 175–182.

    Article  CAS  PubMed  Google Scholar 

  123. Cazzaniga M, Bonanni B, Guerrieri-Gonzaga A, Decensi A . Is it time to test metformin in breast cancer clinical trials? Cancer Epidemiol Biomarkers Prev 2009; 18: 701–705.

    Article  CAS  PubMed  Google Scholar 

  124. Mackenzie MJ, Ernst S, Johnson C, Winquist E . A phase I study of temsirolimus and metformin in advanced solid tumours. Invest New Drugs 2012; 30: 647–652.

    Article  CAS  PubMed  Google Scholar 

  125. Roberts DL, Dive C, Renehan AG . Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 2010; 61: 301–316.

    Article  CAS  PubMed  Google Scholar 

  126. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009; 8: 3984–4001.

    Article  CAS  PubMed  Google Scholar 

  127. Martinez-Outschoorn UE, Pestell RG, Howell A, Tykocinski ML, Nagajyothi F, Machado FS et al. Energy transfer in “parasitic” cancer metabolism. Cell Cycle 2011; 10: 4208–4216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Whitaker-Menezes D, Flomenberg N, Birbe RC, Witkiewicz AK, Pavlides S, Tsirigos A et al. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 2011; 10: 4047–4064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S et al. Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer. Achieving personalized medicine via metabolo-genomics. Cell Cycle 2011; 10: 1271–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vazquez-Martin A, López-Bonetc E, Cufí S, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B et al. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist Updat 2011; 14: 212–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ward PS, Thompson CB . Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pollak M . Metformin and other biguanides in oncology: advancing the research agenda. Cancer Prev Res 2010; 9: 1060–1065.

    Article  CAS  Google Scholar 

  133. Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res 2010; 11: 1451–1461.

    Article  CAS  Google Scholar 

  134. Pollak M . The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Can 2012; 13: 159–169.

    Article  CAS  Google Scholar 

  135. Niraula S, Stambolic V, Dowling RJO, Ennis M, Chang MC, Done SJ et al. Clinical and biologic effects of metformin in early stage breast cancer. Cancer Res 2010; 70: 104s.

    Google Scholar 

  136. Hadad SM, Dewar JA, Elseedawy E, Jordan LB, Purdie C, Bray SE et al. Gene signature of metformin actions on primary breast cancer within a window of opportunity randomized clinical trial. J Clin Oncol 2010; 28: 560.

    Article  Google Scholar 

  137. Hadad SM, Iwamoto T, Jordan L, Purdie C, Bray S, Baker L et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat 2011; 128: 783–794.

    Article  CAS  PubMed  Google Scholar 

  138. Oliveras-Ferraros C, Cufí S, Vazquez-Martin A, Torres-Garcia VZ, Del Barco S, Martin-Castillo B et al. Micro(mi)RNA expression profile of breast cancer epithelial cells treated with the anti-diabetic drug metformin: induction of the tumor suppressor miRNA let-7a and suppression of the TGF-induced oncomiR miRNA-181a. Cell Cycle 2011; 10: 1144–1151.

    Article  CAS  PubMed  Google Scholar 

  139. Feng Z . p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2010; 2: a001057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Lee JW, Park S, Takahashi Y, Wang HG . The association of AMPK with ULK1 regulates autophagy. PLoS One 2010; 5: e15394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Chiacchiera F, Simone C . The AMPK-FoxO3A axis as a target for cancer treatment. Cell Cycle 2010; 9: 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  142. Frenzel A, Grespi F, Chmelewskij W, Villunger A . Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis 2009; 14: 584–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 2009; 10: 285–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zalckvar E, Berissi H, Eisenstein M, Kimchi A . Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 2009; 5: 720–722.

    Article  CAS  PubMed  Google Scholar 

  145. Strappazzon F, Vietri-Rudan M, Campello S, Nazio F, Florenzano F, Fimia GM et al. Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J. 2011; 30: 1195–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministero dell′Università e della Ricerca with the MIUR 5 × 1000 grant no. DO11/002 and by the Associazione Italiana per la Ricerca sul Cancro (AIRC grant no. R10/029). MAP would like to thank Dr Mathias Christian Zohoungbogbo who first introduced him to metformin. The authors wish to thank Dr Daniela Majerna for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Pierotti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierotti, M., Berrino, F., Gariboldi, M. et al. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 32, 1475–1487 (2013). https://doi.org/10.1038/onc.2012.181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.181

Keywords

This article is cited by

Search

Quick links