Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GRP78 regulates clusterin stability, retrotranslocation and mitochondrial localization under ER stress in prostate cancer

Abstract

Expression of clusterin (CLU) closely correlates with the regulation of apoptosis in cancer. Although endoplasmic reticulum (ER) stress-induced upregulation and retrotranslocation of cytoplasmic CLU (presecretory (psCLU) and secreted (sCLU) forms) has been linked to its anti-apoptotic properties, mechanisms mediating these processes remain undefined. Here, we show using human prostate cancer cells that GRP78 (Bip) associates with CLU under ER stress conditions to facilitate its retrotranslocation and redistribution to the mitochondria. Many ER stress inducers, including thapsigargin, MG132 or paclitaxel, increased expression levels of GRP78 and CLU, as well as post-translationally modified hypoglycosylated CLU forms. ER stress increased association between GRP78 and CLU, which led to increased cytoplasmic CLU levels, while reducing sCLU levels secreted into the culture media. GRP78 stabilized CLU protein and its hypoglycosylated forms, in particular after paclitaxel treatment. Moreover, subcellular fractionation and confocal microscopy with CLUGFP indicated that GRP78 increased stress-induced CLU retrotranslocation from the ER with co-localized redistribution to the mitochondria, thereby reducing stress-induced apoptosis by cooperatively stabilizing mitochondrial membrane integrity. GRP78 silencing reduced CLU protein, but not mRNA levels, and enhanced paclitaxel-induced cell apoptosis. Taken together, these findings reveal novel dynamic interactions between GRP78 and CLU under ER stress conditions that govern CLU trafficking and redistribution to the mitochondria, elucidating how GRP78 and CLU cooperatively promote survival during treatment stress in prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Trougakos IP, Djeu JY, Gonos ES, Boothman DA . Advances and challenges in basic and translational research on clusterin. Cancer Res 2009; 69: 403–406.

    Article  CAS  Google Scholar 

  2. Miyake H, Nelson C, Rennie PS, Gleave ME . Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene testosterone-repressed prostate message-2 in prostate cancer xenograft models. Cancer Res 2000; 60: 2547–2554.

    CAS  Google Scholar 

  3. Gleave M, Miyake H . Use of antisense oligonucleotides targeting the cytoprotective gene, clusterin, to enhance androgen- and chemo-sensitivity in prostate cancer. World J Urol 2005; 23: 38–46.

    Article  CAS  Google Scholar 

  4. Trougakos IP, Gonos ES . Oxidative stress in malignant progression: the role of clusterin, a sensitive cellular biosensor of free radicals. Adv Cancer Res 2009; 104: 171–210.

    Article  CAS  Google Scholar 

  5. Shiota M, Zoubeidi A, Kumano M, Beraldi E, Naito S, Nelson CC et al. Clusterin is a critical downstream mediator of stress-induced YB-1 transactivation in prostate cancer. Mol Cancer Res 2011; 9: 1755–1766.

    Article  CAS  Google Scholar 

  6. Stanley P, Schachter H, Taniguchi N . N-Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR et al. (eds) Essentials of Glycobiology. 2nd ed. (Cold Spring Harbor Laboratory Press, New York, 2009, Chapter 8).

    Google Scholar 

  7. Shental-Bechor D, Levy Y . Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr Opin Struct Biol 2009; 19: 524–533.

    Article  CAS  Google Scholar 

  8. Kapron JT, Hilliard GM, Lakins JN, Tenniswood MP, West KA, Carr SA et al. Identification and characterization of glycosylation sites in human serum clusterin. Protein Sci 1997; 6: 2120–2133.

    Article  CAS  Google Scholar 

  9. Graves TK, Patel S, Dannies PS, Hinkle PM . Misfolded growth hormone causes fragmentation of the Golgi apparatus and disrupts endoplasmic reticulum-to-Golgi traffic. J Cell Sci 2001; 114: 3685–3694.

    CAS  PubMed  Google Scholar 

  10. Afshar N, Black BE, Paschal BM . Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Mol Cell Biol 2005; 25: 8844–8853.

    Article  CAS  Google Scholar 

  11. Meusser B, Hirsch C, Jarosch E, Sommer T . ERAD: the long road to destruction. Nat Cell Biol 2005; 7: 766–772.

    Article  CAS  Google Scholar 

  12. Hirsch C, Blom D, Ploegh HL . A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J 2003; 22: 1036–1046.

    Article  CAS  Google Scholar 

  13. Blom D, Hirsch C, Stern P, Tortorella D, Ploegh HL . A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J 2004; 23: 650–658.

    Article  CAS  Google Scholar 

  14. Nizard P, Tetley S, Le Dréan Y, Watrin T, Le Goff P, Wilson MR et al. Stress-induced retrotranslocation of clusterin/ApoJ into the cytosol. Traffic 2007; 8: 554–565.

    Article  CAS  Google Scholar 

  15. Lamoureux F, Thomas C, Yin MJ, Kuruma H, Beraldi E, Fazli L et al. Clusterin inhibition using OGX-011 synergistically enhances Hsp90 inhibitor activity by suppressing the heat shock response in castrate resistant prostate cancer. Cancer Res 2011; 71: 5838–5849.

    Article  CAS  Google Scholar 

  16. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY . Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 2005; 7: 909–915.

    Article  CAS  Google Scholar 

  17. Trougakos IP, Lourda M, Antonelou MH, Kletsas D, Gorgoulis VG, Papassideri IS et al. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res 2009; 15: 48–59.

    Article  CAS  Google Scholar 

  18. Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 2005; 65: 4663–4672.

    Article  CAS  Google Scholar 

  19. Sun FC, Wei S, Li CW, Chang YS, Chao CC, Lai YK . Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J 2006; 396: 31–39.

    Article  CAS  Google Scholar 

  20. Ni M, Zhang Y, Lee AS . Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J 2011; 434: 181–188.

    Article  CAS  Google Scholar 

  21. Hayashi T, Su TP . Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007; 131: 596–610.

    Article  CAS  Google Scholar 

  22. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 2002; 514: 122–128.

    Article  CAS  Google Scholar 

  23. Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 2004; 6: 275–284.

    Article  CAS  Google Scholar 

  24. Shu CW, Sun FC, Cho JH, Lin CC, Liu PF, Chen PY et al. GRP78 and Raf-1 cooperatively confer resistance to endoplasmic reticulum stress-induced apoptosis. J Cell Physiol 2008; 215: 627–635.

    Article  CAS  Google Scholar 

  25. Kim N, Yoo JC, Han JY, Hwang EM, Kim YS, Jeong EY et al. Human nuclear clusterin mediates apoptosis by interacting with Bcl-XL through C-terminal coiled coil domain. J Cell Physiol 2012; 227: 1157–1167.

    Article  CAS  Google Scholar 

  26. Yang CR, Yeh S, Leskov K, Odegaard E, Hsu HL, Chang C et al. Isolation of Ku70-binding proteins (KUBs). Nucleic Acids Res 1999; 27: 2165–2174.

    Article  CAS  Google Scholar 

  27. Lee DH, Ha JH, Kim Y, Bae KH, Park JY, Choi WS et al. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochem Biophys Res Commun 2011; 408: 541–547.

    Article  CAS  Google Scholar 

  28. Poon S, Easterbrook-Smith SB, Rybchyn MS, Carver JA, Wilson MR . Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 2000; 39: 15953–15960.

    Article  CAS  Google Scholar 

  29. Zoubeidi A, Ettinger S, Beraldi E, Hadaschik B, Zardan A, Klomp LW et al. Clusterin facilitates COMMD1 and I-kappaB degradation to enhance NF-kappaB activity in prostate cancer cells. Mol Cancer Res 2010; 8: 119–130.

    Article  CAS  Google Scholar 

  30. Wacker I, Kaether C, Krömer A, Migala A, Almers W, Gerdes HH . Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J Cell Sci 1997; 110: 1453–1463.

    CAS  PubMed  Google Scholar 

  31. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS . Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 2003; 278: 20915–20924.

    Article  CAS  Google Scholar 

  32. Suzuki T, Lu J, Zahed M, Kita K, Suzuki N . Reduction of GRP78 expression with siRNA activates unfolded protein response leading to apoptosis in HeLa cells. Arch Biochem Biophys 2007; 468: 1–14.

    Article  CAS  Google Scholar 

  33. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26: 9220–9231.

    Article  CAS  Google Scholar 

  34. Wu J, Kaufman RJ . From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 2006; 13: 374–384.

    Article  CAS  Google Scholar 

  35. Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 2007; 282: 4702–4710.

    Article  CAS  Google Scholar 

  36. Ron D, Walter P . Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8: 519–529.

    Article  CAS  Google Scholar 

  37. Zoubeidi A, Chi K, Gleave M . Targeting the cytoprotective chaperone, clusterin, for treatment of advanced cancer. Clin Cancer Res 2010; 16: 1088–1093.

    Article  CAS  Google Scholar 

  38. Yerbury JJ, Rybchyn MS, Easterbrook-Smith SB, Henriques C, Wilson MR . The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 2005; 44: 10914–10925.

    Article  CAS  Google Scholar 

  39. Carver JA, Rekas A, Thorn DC, Wilson MR . Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB Life 2003; 55: 661–668.

    Article  CAS  Google Scholar 

  40. Ma Y, Hendershot LM . The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004; 4: 966–977.

    Article  CAS  Google Scholar 

  41. de Brito OM, Scorrano L . Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 2008; 456: 605–610.

    Article  Google Scholar 

  42. Hayashi T, Rizzuto R, Hajnoczky G, Su TP . MAM: more than just a housekeeper. Trends Cell Biol 2009; 19: 81–88.

    Article  CAS  Google Scholar 

  43. Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H . Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem 2005; 280: 25060–25070.

    Article  CAS  Google Scholar 

  44. Ammar H, Closset JL . Clusterin activates survival through the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 2008; 283: 12851–12861.

    Article  CAS  Google Scholar 

  45. Katiyar S, Joshi S, Lennarz WJ . The retrotranslocation protein Derlin-1 binds peptide:N-glycanase to the endoplasmic reticulum. Mol Biol Cell 2005; 16: 4584–4594.

    Article  CAS  Google Scholar 

  46. Tsutsumi S, Namba T, Tanaka KI, Arai Y, Ishihara T, Aburaya M et al. Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene 2006; 25: 1018–1029.

    Article  CAS  Google Scholar 

  47. Trougakos IP, So A, Jansen B, Gleave ME, Gonos ES . Silencing expression of the clusterin/apolipoprotein j gene in human cancer cells using small interfering RNA induces spontaneous apoptosis, reduced growth ability, and cell sensitization to genotoxic and oxidative stress. Cancer Res 2004; 64: 1834–1842.

    Article  CAS  Google Scholar 

  48. Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 2005; 65: 11083–11093.

    Article  CAS  Google Scholar 

  49. Leung SY, Jackson J, Miyake H, Burt H, Gleave ME . Polymeric micellar paclitaxel phosphorylates Bcl-2 and induces apoptotic regression of androgen-independent LNCaP prostate tumors. Prostate 2000; 44: 156–163.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Gleave.

Ethics declarations

Competing interests

These findings are of relevance to the broader fields of chaperones and apoptosis, and have translational and clinical significance as inhibitors of CLU, like OGX-011, are in Phase III clinical trials in patients with prostate and other cancers. By way of this disclosure, the University of British Columbia has submitted patent applications on OGX-011, listing Dr Gleave as inventor. This IP has been licensed to OncoGenex Technologies, a Vancouver-based biotechnology company that Dr Gleave has founding shares in.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Zoubeidi, A., Beraldi, E. et al. GRP78 regulates clusterin stability, retrotranslocation and mitochondrial localization under ER stress in prostate cancer. Oncogene 32, 1933–1942 (2013). https://doi.org/10.1038/onc.2012.212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.212

Keywords

This article is cited by

Search

Quick links