Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RET is a potential tumor suppressor gene in colorectal cancer

Abstract

Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the glial cell-derived neurotrophic factor family ligands, was one of the first oncogenes to be identified, and has been shown to be an oncogene in thyroid cancer and pheochromocytoma. However, unexpectedly, we found RET is methylated in 27% of colon adenomas and in 63% of colorectal cancers, and now provide evidence that RET has tumor suppressor activity in colon cancer. The aberrant methylation of RET correlates with decreased RET expression, whereas the restoration of RET in colorectal cancer cell lines results in apoptosis. Furthermore, in support of a tumor suppressor function of RET, mutant RET has also been found in primary colorectal cancer. We now show that these mutations inactivate RET, which is consistent with RET being a tumor suppressor gene in the colon. These findings suggest that the aberrant methylation of RET and the mutational inactivation of RET promote colorectal cancer formation, and that RET can serve as a tumor suppressor gene in the colon. Moreover, the increased frequency of methylated RET in colon cancers compared with adenomas suggests RET inactivation is involved in the progression of colon adenomas to cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kondo Y, Issa JP . Epigenetic changes in colorectal cancer. Cancer Metastasis Rev 2004; 23: 29–39.

    Article  CAS  PubMed  Google Scholar 

  2. Estecio MR, Yan PS, Ibrahim AE, Tellez CS, Shen L, Huang TH et al. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res 2007; 17: 1529–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chan TA, Glockner S, Yi JM, Chen W, Van Neste L, Cope L et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med 2008; 5: e114.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 2012; 22: 271–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rojas A, Meherem S, Kim YH, Washington MK, Willis JE, Markowitz SD et al. The aberrant methylation of TSP1 suppresses TGF-beta1 activation in colorectal cancer. Int J Cancer 2008; 123: 14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Veigl M, Kasturi L, Olechnowicz J, Ma A, Lutterbaugh J, Periyasamy S et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci USA 1998; 95: 8698–8702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 1995; 55: 4525–4530.

    CAS  PubMed  Google Scholar 

  8. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S et al. Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA 2010; 107: 18545–18550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Issa JP . CpG island methylator phenotype in cancer. Nat Rev Cancer 2004; 4: 988–993.

    Article  CAS  PubMed  Google Scholar 

  10. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.

    Article  PubMed  Google Scholar 

  11. Alhopuro P, Sammalkorpi H, Niittymaki I, Bistrom M, Raitila A, Saharinen J et al. Candidate driver genes in microsatellite-unstable colorectal cancer. Int J Cancer 2012; 130: 1558–1566.

    Article  CAS  PubMed  Google Scholar 

  12. Eskiocak U, Kim SB, Ly P, Roig AI, Biglione S, Komurov K et al. Functional parsing of driver mutations in the colorectal cancer genome reveals numerous suppressors of anchorage-independent growth. Cancer Res 2011; 71: 4359–4365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wells SA, Santoro M . Targeting the RET pathway in thyroid cancer. Clin Cancer Res 2009; 15: 7119–7123.

    Article  CAS  PubMed  Google Scholar 

  14. Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar A-R et al. Effect of conditional knockout of the type II TGFB receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 2005; 65: 2296–2302.

    Article  CAS  PubMed  Google Scholar 

  15. Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM et al. Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 2006; 25: 3408–3423.

    Article  CAS  PubMed  Google Scholar 

  16. Bierie B, Moses HL . Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6: 506–520.

    Article  CAS  PubMed  Google Scholar 

  17. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K . Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 2009; 5: 504–514.

    Article  CAS  PubMed  Google Scholar 

  18. Grady W, Rajput A, Myeroff L, Liu D, Willis J, Kwon K et al. Mutation of the type II TGF-β receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 1998; 58: 3101–3104.

    CAS  PubMed  Google Scholar 

  19. Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO et al. Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest 2010; 120: 778–77 790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V . Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367: 380–383.

    Article  CAS  PubMed  Google Scholar 

  21. Popsueva A, Poteryaev D, Arighi E, Meng X, Angers-Loustau A, Kaplan D et al. GDNF promotes tubulogenesis of GFRalpha1-expressing MDCK cells by Src-mediated phosphorylation of Met receptor tyrosine kinase. J Cell Biol 2003; 161: 119–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wartiovaara K, Salo M, Sainio K, Rintala R, Sariola H . Distribution of glial cell line-derived neurotrophic factor mRNA in human colon suggests roles for muscularis mucosae in innervation. J Pediatr Surg 1998; 33: 1501–1506.

    Article  CAS  PubMed  Google Scholar 

  23. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 1996; 381: 789–793.

    Article  CAS  PubMed  Google Scholar 

  24. Jing S, Yu Y, Fang M, Hu Z, Holst PL, Boone T et al. GFRalpha-2 and GFRalpha-3 are two new receptors for ligands of the GDNF family. J Biol Chem 1997; 272: 33111–33117.

    Article  CAS  PubMed  Google Scholar 

  25. Fukuda T, Kiuchi K, Takahashi M . Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase. J Biol Chem 2002; 277: 19114–19121.

    Article  CAS  PubMed  Google Scholar 

  26. Airaksinen MS, Saarma M . The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002; 3: 383–394.

    Article  CAS  PubMed  Google Scholar 

  27. Borrello MG, Alberti L, Arighi E, Bongarzone I, Battistini C, Bardelli A et al. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol 1996; 16: 2151–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bogen O, Joseph EK, Chen X, Levine JD . GDNF hyperalgesia is mediated by PLCgamma, MAPK/ERK, PI3K, CDK5 and Src family kinase signaling and dependent on the IB4-binding protein versican. Eur J Neurosci 2008; 28: 12–19.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Diaz-Rodriguez E, Garcia-Lavandeira M, Perez-Romero S, Senra A, Canibano C, Palmero I et al. Direct promoter induction of p19Arf by Pit-1 explains the dependence receptor RET/Pit-1/p53-induced apoptosis in the pituitary somatotroph cells. Oncogene 2012; 31: 2824–2835.

    Article  CAS  PubMed  Google Scholar 

  30. Goldschneider D, Mehlen P . Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene 2010; 29: 1865–1882.

    Article  CAS  PubMed  Google Scholar 

  31. Trupp M, Scott R, Whittemore SR, Ibanez CF . Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem 1999; 274: 20885–20894.

    Article  CAS  PubMed  Google Scholar 

  32. Arighi E, Borrello MG, Sariola H . RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005; 16: 441–467.

    Article  CAS  PubMed  Google Scholar 

  33. Pasini B, Borrello MG, Greco A, Bongarzone I, Luo Y, Mondellini P et al. Loss of function effect of RET mutations causing Hirschsprung disease. Nat Genet 1995; 10: 35–40.

    Article  CAS  PubMed  Google Scholar 

  34. Asai N, Jijiwa M, Enomoto A, Kawai K, Maeda K, Ichiahara M et al. RET receptor signaling: dysfunction in thyroid cancer and Hirschsprung’s disease. Pathol Int 2006; 56: 164–172.

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M . Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382: 70–73.

    Article  CAS  PubMed  Google Scholar 

  36. Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S et al. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 2007; 3: 2023–2036.

    Article  CAS  PubMed  Google Scholar 

  37. Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI et al. Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res 2000; 60: 5021–5026.

    CAS  PubMed  Google Scholar 

  38. Ahuja N, Li Q, Mohan M, Baylin S, Issa J-P . Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 1998; 58: 5489–5494.

    CAS  PubMed  Google Scholar 

  39. Eads CA, Lord RV, Wickramasinghe K, Long TI, Kurumboor SK, Bernstein L et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res 2001; 61: 3410–3418.

    CAS  PubMed  Google Scholar 

  40. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38: 787–793.

    Article  CAS  PubMed  Google Scholar 

  41. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 1998; 20: 245–253.

    Article  CAS  PubMed  Google Scholar 

  42. Bordeaux MC, Forcet C, Granger L, Corset V, Bidaud C, Billaud M et al. The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J. 2000; 19: 4056–4063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rojas A, Padidam M, Cress D, Grady WM . TGF-β receptor levels regulated the specificity of signaling pathway activation and biological effects of TGF-β. Biochim Biophys Acta-Mol Cell Res 2009; 1793: 1165–1173.

    Article  CAS  Google Scholar 

  44. Janssen KP, Alberici P, Fsihi H, Gaspar C, Breukel C, Franken P et al. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 2006; 131: 1096–1109.

    Article  CAS  PubMed  Google Scholar 

  45. Sipos JA, Shah MH . Thyroid cancer: emerging role for targeted therapies. Ther Adv Med Oncol 2: 3–16.

  46. Arslan-Kirchner M, Epplen JT, Faivre L, Jondeau G, Schmidtke J, De Paepe A et al. Clinical utility gene card for: Loeys-Dietz syndrome (TGFBR1/2) and related phenotypes. Eur J Hum Genet 2011; 19: 1108.

    Article  Google Scholar 

  47. Bernet A, Mazelin L, Coissieux MM, Gadot N, Ackerman SL, Scoazec JY et al. Inactivation of the UNC5C Netrin-1 receptor is associated with tumor progression in colorectal malignancies. Gastroenterology 2007; 133: 1840–1848.

    Article  CAS  PubMed  Google Scholar 

  48. Mehlen P, Fearon ER . Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol 2004; 22: 3420–3428.

    Article  CAS  PubMed  Google Scholar 

  49. Shin SK, Nagasaka T, Jung BH, Matsubara N, Kim WH, Carethers JM et al. Epigenetic and genetic alterations in Netrin-1 receptors UNC5C and DCC in human colon cancer. Gastroenterology 2007; 133: 1849–1857.

    Article  CAS  PubMed  Google Scholar 

  50. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 2005; 102: 15785–15790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kang J, Perry JK, Pandey V, Fielder GC, Mei B, Qian PX et al. Artemin is oncogenic for human mammary carcinoma cells. Oncogene 2009; 28: 2034–2045.

    Article  CAS  PubMed  Google Scholar 

  52. Tang JZ, Kong XJ, Kang J, Fielder GC, Steiner M, Perry JK et al. Artemin-stimulated progression of human non-small cell lung carcinoma is mediated by BCL2. Mol Cancer Ther 2010; 9: 1697–1708.

    Article  CAS  PubMed  Google Scholar 

  53. Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 2008; 27: 3880–3888.

    Article  CAS  PubMed  Google Scholar 

  54. Markowitz S, Myeroff L, Cooper M, Traicoff J, Kochera M, Lutterbaugh J et al. A benign cultured colon adenoma bears three genetically altered colon cancer oncogenes, but progresses to tumorigenicity and transforming growth factor-beta independence without inactivating the p53 tumor suppressor gene. J Clin Invest 1994; 93: 1005–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams A, Harper S, Paraskeva C . Neoplastic transformation of a human colonic epithelial cell line: in vitro evidence for the adenoma to carcinoma sequence. Cancer Res 1990; 50: 4724–4730.

    CAS  PubMed  Google Scholar 

  56. Willson J, Bittner G, Oberley T, Meisner G, Weese J . Cell culture of human colon adenomas and carcinomas. Cancer Res 1987; 47: 2704–2713.

    CAS  PubMed  Google Scholar 

  57. Paraskeva C, Finerty S, Mountford R, Powell S . Specific cytogenetic abnormalities in two new human colorectal adenoma-derived epithelial cell lines. Cancer Res 1989; 49: 1282–1286.

    CAS  PubMed  Google Scholar 

  58. Gan FF, Nagle AA, Ang X, Ho OH, Tan SH, Yang H et al. Shogaols at proapoptotic concentrations induce G(2)/M arrest and aberrant mitotic cell death associated with tubulin aggregation. Apoptosis 2011; 16: 856–867.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for these studies was provided by the NIH (RO1CA115513, P30CA15704, U54CA143862, UO1CA152756, WMG), and a Burroughs Wellcome Fund Translational Research Award for Clinician Scientist (WMG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W M Grady.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Tsuchiya, K., Il Park, D. et al. RET is a potential tumor suppressor gene in colorectal cancer. Oncogene 32, 2037–2047 (2013). https://doi.org/10.1038/onc.2012.225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.225

Keywords

This article is cited by

Search

Quick links