Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting the eIF4A RNA helicase blocks translation of the MUC1-C oncoprotein

A Correction to this article was published on 13 April 2021

This article has been updated

Abstract

The oncogenic MUC1 C-terminal subunit (MUC1-C) subunit is aberrantly overexpressed in most human breast cancers by mechanisms that are not well understood. The present studies demonstrate that stimulation of non-malignant MCF-10A cells with epidermal growth factor (EGF) or heregulin (HRG) results in marked upregulation of MUC1-C translation. Growth factor-induced MUC1-C translation was found to be mediated by PI3K→AKT, and not by MEK→ERK1/2, signaling. We also show that activation of the mammalian target of rapamycin complex 1 (mTORC1)→ribosomal protein S6 kinase 1 (S6K1) pathway decreases tumor suppressor programmed cell death protein 4 (PDCD4), an inhibitor of the eIF4A RNA helicase, and contributes to the induction of MUC1-C translation. In concert with these results, treatment of growth factor-stimulated MCF-10A cells with the eIF4A RNA helicase inhibitors, silvestrol and CR-1-31-B, blocked increases in MUC1-C abundance. The functional significance of the increase in MUC1-C translation is supported by the demonstration that MUC1-C, in turn, forms complexes with EGF receptor (EGFR) and promotes EGFR-mediated activation of the PI3K→AKT pathway and the induction of growth. Compared with MCF-10A cells, constitutive overexpression of MUC1-C in breast cancer cells was unaffected by EGF stimulation, but was blocked by inhibiting PI3K→AKT signaling. The overexpression of MUC1-C in breast cancer cells was also inhibited by blocking eIF4A RNA helicase activity with silvestrol and CR-1-31-B. These findings indicate that EGF-induced MUC1-C expression is mediated by the PI3K→AKT pathway and the eIF4A RNA helicase, and that this response promotes EGFR signaling in an autoinductive loop. The findings also indicate that targeting the eIF4A RNA helicase is a novel approach for blocking MUC1-C overexpression in breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

Abbreviations

MUC1:

mucin 1

MUC1-C:

MUC1 C-terminal subunit

EGF:

epidermal growth factor

HRG:

heregulin

mTORC1:

mammalian target of rapamycin complex 1

S6K1:

ribosomal protein S6 kinase 1

PDCD4:

tumor suppressor programmed cell death protein 4.

References

  1. Sonenberg N, Hinnebusch AG . Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136: 731–745.

    Article  CAS  PubMed Central  Google Scholar 

  2. De Benedetti A, Graff JR . eIF-4E expression and its role in malignancies and metastases. Oncogene 2004; 23: 3189–3199.

    Article  CAS  PubMed Central  Google Scholar 

  3. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T et al. Dissecting eIF4E action in tumorigenesis. Genes Dev 2007; 21: 3232–3237.

    Article  CAS  PubMed Central  Google Scholar 

  4. Ma XM, Blenis J . Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10: 307–318.

    Article  PubMed Central  Google Scholar 

  5. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M . S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 2006; 314: 467–471.

    Article  CAS  PubMed Central  Google Scholar 

  6. Rogers GW, Komar AA, Merrick WC . eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol 2002; 72: 307–331.

    Article  CAS  Google Scholar 

  7. Blagden SP, Willis AE . The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev Clin Oncol 2011; 8: 280–291.

    Article  CAS  Google Scholar 

  8. Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 2008; 118: 2651–2660.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lucas DM, Edwards RB, Lozanski G, West DA, Shin JD, Vargo MA et al. The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. Blood 2009; 113: 4656–4666.

    Article  CAS  PubMed Central  Google Scholar 

  10. Schatz JH, Oricchio E, Wolfe AL, Jiang M, Linkov I, Maragulia J et al. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J Exp Med 2011; 208: 1799–1807.

    Article  CAS  PubMed Central  Google Scholar 

  11. Kufe D . Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 2009; 9: 874–885.

    Article  CAS  PubMed Central  Google Scholar 

  12. Ramasamy S, Duraisamy S, Barbashov S, Kawano T, Kharbanda S, Kufe D . The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol Cell 2007; 27: 992–1004.

    Article  CAS  PubMed Central  Google Scholar 

  13. Schroeder J, Thompson M, Gardner M, Gendler S . Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem 2001; 276: 13057–13064.

    Article  CAS  Google Scholar 

  14. Schroeder JA, Masri AA, Adriance MC, Tessier JC, Kotlarczyk KL, Thompson MC et al. MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene 2004; 23: 5739–5747.

    Article  CAS  Google Scholar 

  15. Pochampalli MR, el Bejjani RM, Schroeder JA . MUC1 is a novel regulator of ErbB1 receptor trafficking. Oncogene 2007; 26: 1693–1701.

    Article  CAS  Google Scholar 

  16. Raina D, Kosugi M, Ahmad R, Panchamoorthy G, Rajabi H, Alam M et al. Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Mol Cancer Therap 2011; 10: 806–816.

    Article  CAS  Google Scholar 

  17. Raina D, Kharbanda S, Kufe D . The MUC1 oncoprotein activates the anti-apoptotic PI3K/Akt and Bcl-xL pathways in rat 3Y1 fibroblasts. J Biol Chem 2004; 279: 20607–20612.

    Article  CAS  Google Scholar 

  18. Li Y, Liu D, Chen D, Kharbanda S, Kufe D . Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 2003; 22: 6107–6110.

    Article  CAS  PubMed Central  Google Scholar 

  19. Huang L, Chen D, Liu D, Yin L, Kharbanda S, Kufe D . MUC1 oncoprotein blocks GSK3β-mediated phosphorylation and degradation of β-catenin. Cancer Res 2005; 65: 10413–10422.

    Article  CAS  PubMed Central  Google Scholar 

  20. Yin L, Kufe D . Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J Biol Chem 2003; 278: 35458–35464.

    Article  CAS  PubMed Central  Google Scholar 

  21. Ren J, Agata N, Chen D, Li Y, Yu W-H, Huang L et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anti-cancer agents. Cancer Cell 2004; 5: 163–175.

    Article  CAS  PubMed Central  Google Scholar 

  22. Yin L, Kharbanda S, Kufe D . Mucin 1 oncoprotein blocks hypoxia-inducible factor 1 alpha activation in a survival response to hypoxia. J Biol Chem 2007; 282: 257–266.

    Article  CAS  PubMed Central  Google Scholar 

  23. Ahmad R, Raina D, Joshi MD, Kawano T, Kharbanda S, Kufe D . MUC1-C oncoprotein functions as a direct activator of the NF-κB p65 transcription factor. Cancer Res 2009; 69: 7013–7021.

    Article  CAS  PubMed Central  Google Scholar 

  24. Ahmad R, Rajabi H, Kosugi M, Joshi M, Alam M, Vasir B et al. MUC1-C oncoprotein promotes STAT3 activation in an auto-inductive regulatory loop. Sci Signal 2011; 4: ra9.

    Article  PubMed Central  Google Scholar 

  25. Raina D, Ahmad R, Joshi M, Yin L, Wu Z, Kawano T et al. Direct targeting of the MUC1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res 2009; 69: 5133–5141.

    Article  CAS  PubMed Central  Google Scholar 

  26. Joshi MD, Ahmad R, Raina D, Rajabi H, Bubley G, Kharbanda S et al. MUC1 oncoprotein is a druggable target in human prostate cancer cells. Mol Cancer Ther 2009; 8: 3056–3065.

    Article  CAS  PubMed Central  Google Scholar 

  27. Zhou J, Rajabi H, Kufe D . MUC1-C oncoprotein is a target for small molecule inhibitors. Mol Pharm 2011; 79: 886–893.

    Article  CAS  Google Scholar 

  28. Newton R, Cambridge L, Hart LA, Stevens DA, Lindsay MA, Barnes PJ . The MAP kinase inhibitors, PD098059, UO126 and SB203580, inhibit IL-1beta-dependent PGE(2) release via mechanistically distinct processes. Br J Pharmacol 2000; 130: 1353–1361.

    Article  CAS  PubMed Central  Google Scholar 

  29. Workman P, Clarke PA, Raynaud FI, van Montfort RL . Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res 2010; 70: 2146–2157.

    Article  CAS  PubMed Central  Google Scholar 

  30. Kong D, Yamori T . Advances in development of phosphatidylinositol 3-kinase inhibitors. Curr Med Chem 2009; 16: 2839–2854.

    Article  CAS  Google Scholar 

  31. Palamarchuk A, Efanov A, Maximov V, Aqeilan RI, Croce CM, Pekarsky Y . Akt phosphorylates and regulates Pdcd4 tumor suppressor protein. Cancer Res 2005; 65: 11282–11286.

    Article  CAS  PubMed Central  Google Scholar 

  32. Jansen AP, Camalier CE, Colburn NH . Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Res 2005; 65: 6034–6041.

    Article  CAS  Google Scholar 

  33. Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 1998; 12: 3663–3674.

    Article  CAS  PubMed Central  Google Scholar 

  34. Waterman H, Yarden Y . Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett 2001; 490: 142–152.

    Article  CAS  PubMed Central  Google Scholar 

  35. Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF . A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 2004; 24: 4070–4081.

    Article  CAS  Google Scholar 

  36. Rodrigo C, Cencic R, Roche S, Pelletier J, Porco J . Synthesis of rocaglamide hydroxamates and related compounds as eukaryotic translation inhibitors: synthetic and biological studies. J Med Chem 2012; 55: 558–562.

    Article  CAS  Google Scholar 

  37. Vermeer PD, Einwalter LA, Moninger TO, Rokhlina T, Kern JA, Zabner J et al. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 2003; 422: 322–326.

    Article  CAS  Google Scholar 

  38. Hsieh AC, Truitt ML, Ruggero D . Oncogenic AKTivation of translation as a therapeutic target. Br J Cancer 2011; 105: 329–336.

    Article  CAS  PubMed Central  Google Scholar 

  39. Li Y, Ren J, Yu W, Li G, Kuwahara H, Yin L et al. The EGF receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and β-catenin. J Biol Chem 2001; 276: 35239–35242.

    Article  CAS  PubMed Central  Google Scholar 

  40. Wedeken L, Singh P, Klempnauer KH . Tumor suppressor protein Pdcd4 inhibits translation of p53 mRNA. J Biol Chem 2011; 286: 42855–42862.

    Article  CAS  PubMed Central  Google Scholar 

  41. Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P, Merrick WC et al. mRNA helicases: the tacticians of translational control. Nat Rev Mol Cell Biol 2011; 12: 235–245.

    Article  CAS  Google Scholar 

  42. Hwang BY, Su BN, Chai H, Mi Q, Kardono LB, Afriastini JJ et al. Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. J Org Chem 2004; 69: 3350–3358.

    Article  CAS  Google Scholar 

  43. Cencic R, Carrier M, Galicia-Vazquez G, Bordeleau ME, Sukarieh R, Bourdeau A et al. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS One 2009; 4: e5223.

    Article  PubMed Central  Google Scholar 

  44. Gerard B, Cencic R, Pelletier J, Porco JA . Enantioselective synthesis of the complex rocaglate (-)-silvestrol. Angew Chem Int Ed Engl 2007; 46: 7831–7834.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute Grants CA97098, CA42802 and CA100707; the National Institutes of Health Grant GM-073855 (JAP), and a postdoctoral fellowship from the American Cancer Society PF-11-077-01-CDD (CMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kufe.

Ethics declarations

Competing interests

DK holds equity in Genus Oncology and is a consultant to the company. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Rajabi, H., Rodrigo, C. et al. Targeting the eIF4A RNA helicase blocks translation of the MUC1-C oncoprotein. Oncogene 32, 2179–2188 (2013). https://doi.org/10.1038/onc.2012.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.236

Keywords

This article is cited by

Search

Quick links