Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MDM2 expression is repressed by the RNA-binding protein RNPC1 via mRNA stability

Abstract

The RNA-binding protein (RBP) RNPC1 is a target of the p53 family and forms a feedback regulatory loop with the p53 family proteins. The murine double minute-2 (MDM2) oncogene, a key negative regulator of p53, has a critical role in a variety of fundamental cellular processes. MDM2 expression is found to be regulated via gene amplification, transcription, protein translation and protein stability. In the current study, we reported a novel regulation of MDM2 by RNPC1 via mRNA stability. Specifically, we found that overexpression of RNPC1 decreases, whereas knockdown or knockout of RNPC1 increases, the level of MDM2 transcript and protein independent of p53. To uncover the underlying mechanism, we found that RNPC1 is able to destabilize the MDM2 transcript via binding to multiple AU-/U-rich elements in MDM2 3′untranslated region (3′UTR). Consistent with this, we showed that RNPC1 inhibits expression of exogenous MDM2 from an expression vector as long as the vector contains an AU-/U-rich element from MDM2 3′UTR. Finally, we showed that the RNA-binding activity of RNPC1 is required for binding to MDM2 transcript and consequently, for inhibiting MDM2 expression. Together, we uncover a novel regulation of MDM2 by the RBP RNPC1 via mRNA stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cahilly-Snyder L, Yang-Feng T, Francke U, George DL . Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet 1987; 13: 235–244.

    Article  CAS  PubMed  Google Scholar 

  2. Fakharzadeh SS, Trusko SP, George DL . Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 1991; 10: 1565–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Momand J, Zambetti GP, Olson DC, George D, Levine AJ . The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  4. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B . Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362: 857–860.

    Article  CAS  PubMed  Google Scholar 

  5. Haupt Y, Maya R, Kazaz A, Oren M . Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    Article  CAS  PubMed  Google Scholar 

  6. Honda R, Tanaka H, Yasuda H . Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997; 420: 25–27.

    Article  CAS  PubMed  Google Scholar 

  7. Kubbutat MH, Jones SN, Vousden KH . Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    Article  CAS  PubMed  Google Scholar 

  8. Jones SN, Roe AE, Donehower LA, Bradley A . Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378: 206–208.

    Article  CAS  PubMed  Google Scholar 

  9. Montes de Oca Luna R, Wagner DS, Lozano G . Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206.

    Article  CAS  PubMed  Google Scholar 

  10. Bouska A, Eischen CM . Murine double minute 2: p53-independent roads lead to genome instability or death. Trends Biochem Sci 2009; 34: 279–286.

    Article  CAS  PubMed  Google Scholar 

  11. Ganguli G, Wasylyk B . p53-independent functions of MDM2. Mol Cancer Res 2003; 1: 1027–1035.

    CAS  PubMed  Google Scholar 

  12. Barak Y, Juven T, Haffner R, Oren M . mdm2 expression is induced by wild type p53 activity. EMBO J 1993; 12: 461–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zauberman A, Flusberg D, Haupt Y, Barak Y, Oren M . A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res 1995; 23: 2584–2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trotta R, Vignudelli T, Candini O, Intine RV, Pecorari L, Guerzoni C et al. BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 2003; 3: 145–160.

    Article  CAS  PubMed  Google Scholar 

  15. Moumen A, Patané S, Porras A, Dono R, Maina F . Met acts on Mdm2 via mTOR to signal cell survival during development. Development 2007; 134: 1443–1451.

    Article  CAS  PubMed  Google Scholar 

  16. Xiong L, Kou F, Yang Y, Wu J . A novel role for IGF-1R in p53-mediated apoptosis through translational modulation of the p53-Mdm2 feedback loop. J Cell Biol 2007; 178: 995–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM . Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275: 8945–8951.

    Article  CAS  PubMed  Google Scholar 

  18. Honda R, Yasuda H . Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 2000; 19: 1473–1476.

    Article  CAS  PubMed  Google Scholar 

  19. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH . Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3: 577–587.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 2003; 23: 8902–8912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai MS, Lu H . Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004; 279: 44475–44482.

    Article  CAS  PubMed  Google Scholar 

  22. Dai MS, Zeng SX, JIN Y, Sun XX, David L, Lu H . Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 2004; 24: 7654–7668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin A, Itahana K, O’Keefe K, Zhang Y . Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 2004; 24: 7669–7680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X et al. Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 2009; 35: 316–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiong X, Zhao Y, He H, Sun Y . Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene 2011; 30: 1798–1811.

    Article  CAS  PubMed  Google Scholar 

  26. Shu L, Yan W, Chen X . RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev 2006; 20: 2961–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Jun Cho S, Chen X . RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proc Natl Acad Sci USA 2010; 107: 9614–9619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang J, Cho SJ, Shu L, Yan W, Guerrero T, Kent M et al. Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev 2011; 25: 1528–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cho SJ, Zhang J, Chen X . RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability. Nucleic Acids Res 2010; 38: 2256–2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miyamoto S, Hidaka K, Jin D, Morisaki T . RNA-binding proteins Rbm38 and Rbm24 regulate myogenic differentiation via p21-dependent and -independent regulatory pathways. Genes Cells 2009; 14: 1241–1252.

    Article  CAS  PubMed  Google Scholar 

  31. Leveille N, Elkon R, Davalos V, Manoharan V, Hollingworth D, Oude Vrielink J et al. Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity. Nat Commun 2011; 2: 513.

    Article  PubMed  Google Scholar 

  32. Pan Y, Chen J . MDM2 promotes ubiquitination and degradation of MDMX. Mol Cell Biol 2003; 23: 5113–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawai H, Wiederschain D, Kitao H, Stuart J, Tsai KK, Yuan ZM . DNA damage-induced MDMX degradation is mediated by MDM2. J Biol Chem 2003; 278: 45946–45953.

    Article  CAS  PubMed  Google Scholar 

  34. Bartel F, Taubert H, Harris LC . Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2002; 2: 9–15.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Sun Q, Zhang Z, Ge S, Han ZG, Chen WT . Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene 2013; 32: 61–69.

    Article  PubMed  Google Scholar 

  36. Xiao J, Lin H, Luo X, Luo X, Wang Z . miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J 2011; 30: 5021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ghosh M, Aquila HL, Michaud J, Ai Y, Wu MT, Hemmes A et al. Essential role of the RNA-binding protein HuR in progenitor cell survival in mice. J Clin Invest 2009; 119: 3530–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lukas J, Gao DQ, Keshmeshian M, Wen WH, Tsao-Wei D, Rosenberg S et al. Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res 2001; 61: 3212–3219.

    CAS  PubMed  Google Scholar 

  39. Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J . Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med 1996; 2: 912–917.

    Article  CAS  PubMed  Google Scholar 

  40. Cho SJ, Jung YS, Zhang J, Chen X . The RNA-binding protein RNPC1 stabilizes the mRNA encoding the RNA-binding protein HuR and cooperates with HuR to suppress cell proliferation. J Biol Chem 2012; 287: 14535–14544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan W, Zhang J, Zhang Y, Jung YS, Chen X . P73 expression is regulated by RNPC1, a target of the p53 family, via mRNA stability. Mol Cell Biol (e-pub ahead of print 16 April 2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giles KM, Daly JM, Beveridge DJ, Thomson AM, Voon DC, Furneaux HM et al. The 3′-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J Biol Chem 2003; 278: 2937–2946.

    Article  CAS  PubMed  Google Scholar 

  43. Jung YS, Qian Y, Chen X . DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation. DNA Repair (Amst) 2012; 11: 177–184.

    Article  CAS  Google Scholar 

  44. Harms KL, Chen X . Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res 2007; 67: 3145–3152.

    Article  CAS  PubMed  Google Scholar 

  45. Dohn M, Zhang S, Chen X . p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 2001; 20: 3193–3205.

    Article  CAS  PubMed  Google Scholar 

  46. Peritz T, Zeng F, Kannanayakal TJ, Kilk K, Eiriksdottir E, Langel U et al. Immunoprecipitation of mRNA-protein complexes. Nat Protoc 2006; 1: 577–580.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NIH grants R01 CA076069 and R01 CA102188.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Zhang or X Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, E., Zhang, J. & Chen, X. MDM2 expression is repressed by the RNA-binding protein RNPC1 via mRNA stability. Oncogene 32, 2169–2178 (2013). https://doi.org/10.1038/onc.2012.238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.238

Keywords

This article is cited by

Search

Quick links