Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation

Abstract

The TRC8 gene, which was previously shown to be disrupted by a 3;8 chromosomal translocation in hereditary kidney cancer, encodes for an endoplasmic reticulum-resident E3 ligase. Studies have shown that TRC8 exhibits a tumor-suppressive effect through its E3-ligase activity. Therefore, the identification of its physiological substrates will provide important insights into the molecular mechanism underlying TRC8-mediated tumor suppression. Here we show that TRC8 targets heme oxygenase-1 (HO-1), an antioxidant enzyme highly expressed in various cancers, for ubiquitination and degradation. Ectopic TRC8 expression suppresses HO-1-induced cancer cell growth and migration/invasion. Conversely, HO-1 depletion reduced the tumorigenic and invasive capacities promoted by TRC8 knockdown. HO-1 downregulation in renal carcinoma cells induces a mitotic delay at G2/M phase by increasing the intracellular reactive oxygen species and the DNA-damage-induced checkpoint activation. These results highlight the tumorigenic role of HO-1 and the importance of TRC8-mediated HO-1 degradation in the control of cancer growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gemmill RM, West JD, Boldog F, Tanaka N, Robinson LJ, Smith DI et al. The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8. Proc Natl Acad Sci USA 1998; 95: 9572–9577.

    Article  CAS  Google Scholar 

  2. Poland KS, Azim M, Folsom M, Goldfarb R, Naeem R, Korch C et al. A constitutional balanced t(3;8)(p14;q24.1) translocation results in disruption of the TRC8 gene and predisposition to clear cell renal cell carcinoma. Genes Chromosomes Cancer 2007; 46: 805–812.

    Article  CAS  Google Scholar 

  3. Gimelli S, Beri S, Drabkin HA, Gambini C, Gregorio A, Fiorio P et al. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma. Mol cancer 2009; 8: 52.

    Article  Google Scholar 

  4. Gemmill RM, Bemis LT, Lee JP, Sozen MA, Baron A, Zeng C et al. The TRC8 hereditary kidney cancer gene suppresses growth and functions with VHL in a common pathway. Oncogene 2002; 21: 3507–3516.

    Article  CAS  Google Scholar 

  5. Brauweiler A, Lorick KL, Lee JP, Tsai YC, Chan D, Weissman AM et al. RING-dependent tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene. Oncogene 2007; 26: 2263–2271.

    Article  CAS  Google Scholar 

  6. Abraham NG, Kappas A . Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 2008; 60: 79–127.

    Article  CAS  Google Scholar 

  7. Jozkowicz A, Was H, Dulak J . Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal 2007; 9: 2099–2117.

    Article  CAS  Google Scholar 

  8. Sunamura M, Duda DG, Ghattas MH, Lozonschi L, Motoi F, Yamauchi J et al. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 2003; 6: 15–24.

    Article  CAS  Google Scholar 

  9. Mayerhofer M, Florian S, Krauth MT, Aichberger KJ, Bilban M, Marculescu R et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res 2004; 64: 3148–3154.

    Article  CAS  Google Scholar 

  10. Was H, Cichon T, Smolarczyk R, Rudnicka D, Stopa M, Chevalier C et al. Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol 2006; 169: 2181–2198.

    Article  CAS  Google Scholar 

  11. Chen GG, Liu ZM, Vlantis AC, Tse GM, Leung BC, van Hasselt CA . Heme oxygenase-1 protects against apoptosis induced by tumor necrosis factor-alpha and cycloheximide in papillary thyroid carcinoma cells. J Cell Biochem 2004; 92: 1246–1256.

    Article  CAS  Google Scholar 

  12. Liu ZM, Chen GG, Ng EK, Leung WK, Sung JJ, Chung SC . Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells. Oncogene 2004; 23: 503–513.

    Article  CAS  Google Scholar 

  13. Kocanova S, Buytaert E, Matroule JY, Piette J, Golab J, de Witte P et al. Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis 2007; 12: 731–741.

    Article  CAS  Google Scholar 

  14. Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Kunzli B et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 2005; 11: 3790–3798.

    Article  CAS  Google Scholar 

  15. Mayerhofer M, Gleixner KV, Mayerhofer J, Hoermann G, Jaeger E, Aichberger KJ et al. Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib. Blood 2008; 111: 2200–2210.

    Article  CAS  Google Scholar 

  16. Sass G, Leukel P, Schmitz V, Raskopf E, Ocker M, Neureiter D et al. Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. Int J Cancer 2008; 123: 1269–1277.

    Article  CAS  Google Scholar 

  17. Alaoui-Jamali MA, Bismar TA, Gupta A, Szarek WA, Su J, Song W et al. A novel experimental heme oxygenase-1-targeted therapy for hormone-refractory prostate cancer. Cancer Res 2009; 69: 8017–8024.

    Article  CAS  Google Scholar 

  18. Yang ZZ, Zou AP . Transcriptional regulation of heme oxygenases by HIF-1alpha in renal medullary interstitial cells. Am J Physiol Renal Physiol 2001; 281: F900–F908.

    Article  CAS  Google Scholar 

  19. Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 2002; 21: 5216–5224.

    Article  CAS  Google Scholar 

  20. Hill-Kapturczak N, Voakes C, Garcia J, Visner G, Nick HS, Agarwal A . A cis-acting region regulates oxidized lipid-mediated induction of the human heme oxygenase-1 gene in endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23: 1416–1422.

    Article  CAS  Google Scholar 

  21. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 2004; 279: 8919–8929.

    Article  CAS  Google Scholar 

  22. Chen CY, Jang JH, Li MH, Surh YJ . Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 2005; 331: 993–1000.

    Article  CAS  Google Scholar 

  23. Shan Y, Lambrecht RW, Donohue SE, Bonkovsky HL . Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J 2006; 20: 2651–2653.

    Article  CAS  Google Scholar 

  24. Koizumi S, Gong P, Suzuki K, Murata M . Cadmium-responsive element of the human heme oxygenase-1 gene mediates heat shock factor 1-dependent transcriptional activation. J Biol Chem 2007; 282: 8715–8723.

    Article  CAS  Google Scholar 

  25. Lin PH, Chiang MT, Chau LY . Ubiquitin-proteasome system mediates heme oxygenase-1 degradation through endoplasmic reticulum-associated degradation pathway. Biochim Biophys Acta 2008; 1783: 1826–1834.

    Article  CAS  Google Scholar 

  26. Hwang HW, Lee JR, Chou KY, Suen CS, Hwang MJ, Chen C et al. Oligomerization is crucial for the stability and function of heme oxygenase-1 in the endoplasmic reticulum. J Biol Chem 2009; 284: 22672–22679.

    Article  CAS  Google Scholar 

  27. Hirsch C, Gauss R, Horn SC, Neuber O, Sommer T . The ubiquitylation machinery of the endoplasmic reticulum. Nature 2009; 458: 453–460.

    Article  CAS  Google Scholar 

  28. Stagg HR, Thomas M, van den Boomen D, Wiertz EJ, Drabkin HA, Gemmill RM et al. The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. J Cell Biol 2009; 186: 685–692.

    Article  CAS  Google Scholar 

  29. Lee JP, Brauweiler A, Rudolph M, Hooper JE, Drabkin HA, Gemmill RM . The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways. Mol Cancer Res 2010; 8: 93–106.

    Article  CAS  Google Scholar 

  30. Irisawa M, Inoue J, Ozawa N, Mori K, Sato R . The sterol-sensing endoplasmic reticulum (ER) membrane protein TRC8 hampers ER to Golgi transport of sterol regulatory element-binding protein-2 (SREBP-2)/SREBP cleavage-activated protein and reduces SREBP-2 cleavage. J Biol Chem 2009; 284: 28995–29004.

    Article  CAS  Google Scholar 

  31. Kweon MH, Adhami VM, Lee JS, Mukhtar H . Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem 2006; 281: 33761–33772.

    Article  CAS  Google Scholar 

  32. Li MY, Yip J, Hsin MK, Mok TS, Wu Y, Underwood MJ et al. Haem oxygenase-1 plays a central role in NNK-mediated lung carcinogenesis. Eur Respir J 2008; 32: 911–923.

    Article  CAS  Google Scholar 

  33. Liu PL, Tsai JR, Charles AL, Hwang JJ, Chou SH, Ping YH et al. Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Mol Nutr Food Res 2010; 54 (Suppl 2): S196–S204.

    Article  CAS  Google Scholar 

  34. Datta D, Banerjee P, Gasser M, Waaga-Gasser AM, Pal S . CXCR3-B can mediate growth-inhibitory signals in human renal cancer cells by down-regulating the expression of heme oxygenase-1. J Biol Chem 2010; 285: 36842–36848.

    Article  CAS  Google Scholar 

  35. Goodman AI, Choudhury M, da Silva JL, Schwartzman ML, Abraham NG . Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med 1997; 214: 54–61.

    Article  CAS  Google Scholar 

  36. Flad T, Mueller L, Dihazi H, Grigorova V, Bogumil R, Beck A et al. T cell epitope definition by differential mass spectrometry: identification of a novel, immunogenic HLA-B8 ligand directly from renal cancer tissue. Proteomics 2006; 6: 364–374.

    Article  CAS  Google Scholar 

  37. Banerjee P, Basu A, Datta D, Gasser M, Waaga-Gasser AM, Pal S . Heme oxygenase-1 is overexpressed in human renal cancer cells following activation of the Ras-Raf-ERK Pathway, and mediates anti-apoptotic signal. J Biol Chem 2011; 286: 33580–33590.

    Article  CAS  Google Scholar 

  38. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106–109.

    Article  CAS  Google Scholar 

  39. Otterbein LE, Hedblom A, Harris C, Csizmadia E, Gallo D, Wegiel B . Heme oxygenase-1 and carbon monoxide modulate DNA repair through ataxia-telangiectasia mutated (ATM) protein. Proc Natl Acad Sci USA 2011; 108: 14491–14496.

    Article  CAS  Google Scholar 

  40. Muraoka-Cook RS, Dumont N, Arteaga CL . Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 2005; 11: 937–943.

    Google Scholar 

  41. Pouponnot C, Sii-Felice K, Hmitou I, Rocques N, Lecoin L, Druillennec S et al. Cell context reveals a dual role for Maf in oncogenesis. Oncogene 2006; 25: 1299–1310.

    Article  CAS  Google Scholar 

  42. Yang L, Han Y, Suarez Saiz F, Minden MD . A tumor suppressor and oncogene: the WT1 story. Leukemia 2007; 21: 868–876.

    Article  CAS  Google Scholar 

  43. Fang Y, Nicholl MB . Sirtuin 1 in malignant transformation: friend or foe? Cancer Lett 2011; 306: 10–14.

    Article  CAS  Google Scholar 

  44. Tauber S, Jais A, Jeitler M, Haider S, Husa J, Lindroos J et al. Transcriptome analysis of human cancer reveals a functional role of heme oxygenase-1 in tumor cell adhesion. Mol Cancer 2010; 9: 200.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an Academia Sinica Investigatorship to LYC and a grant from the National Science Council of Taiwan (NSC 100-2320-B-100-009MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L-Y Chau.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, PH., Lan, WM. & Chau, LY. TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation. Oncogene 32, 2325–2334 (2013). https://doi.org/10.1038/onc.2012.244

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.244

Keywords

This article is cited by

Search

Quick links