Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion

Abstract

The RAS–RAF–MEK–ERK pathway is deregulated in over 90% of malignant melanomas, and targeting MEK as a central kinase of this pathway is currently tested in clinical trials. However, dose-limiting side effects are observed, and MEK inhibitors that sufficiently reduce ERK activation in patients show a low clinical response. Apart from dose limitations, a reason for the low response to MEK targeting drugs is thought to be the upregulation of counteracting signalling cascades as a direct response to MEK inhibition. Therefore, understanding the biology of melanoma cells and the effects of MEK inhibition on these cells will help to identify new combinatorial approaches that are more potent and allow for lower concentrations of the drug being used. We have discovered that in melanoma cells MEK inhibition by selumetinib (AZD6244, ARRY-142886) or PD184352, while efficiently suppressing proliferation, stimulates increased invasiveness. Inhibition of MEK suppresses actin–cortex contraction and increases integrin-mediated adhesion. Most importantly, and surprisingly, MEK inhibition results in a significant increase in matrix metalloproteases (MMP)-2 and membrane-type 1–MMP expression. All together, MEK inhibition in melanoma cells induces a ‘mesenchymal’ phenotype that is characterised by protease-driven invasion. This mode of invasion is dependent on integrin-mediated adhesion, and because SRC kinases are the main regulators of this process, the SRC kinase inhibitor, saracatinib (AZD0530), completely abolished the MEK inhibitor-induced invasion. Moreover, the combination of saracatinib and selumetinib effectively suppressed the growth and invasion of melanoma cells in a 3D environment, suggesting that combined inhibition of MEK and SRC is a promising approach to improve the efficacy of targeting the ERK/MAP kinase pathway in melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wellbrock C, Hurlstone A . BRAF as therapeutic target in melanoma. Biochem Pharmacol 2010; 80: 561–567.

    Article  CAS  PubMed  Google Scholar 

  2. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010; 467: 596–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010; 140: 209–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Puzanov I, Burnett P, Flaherty KT . Biological challenges of BRAF inhibitor therapy. Mol Oncol 2011; 5: 116–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 2007; 13: 1576–1583.

    Article  CAS  PubMed  Google Scholar 

  6. Dummer R, Robert C, Chapman PB, Sosman JA, Middleton M, Bastholt L et al. AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients with advanced melanoma: an open-label, randomized, multicenter, phase II study. J Clin Oncol 2008; 26: 9033.

    Article  Google Scholar 

  7. Yang JY, Chang CJ, Xia W, Wang Y, Wong KK, Engelman JA et al. Activation of FOXO3a is sufficient to reverse mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor chemoresistance in human cancer. Cancer Res 2010; 70: 4709–4718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gopal YN, Deng W, Woodman SE, Komurov K, Ram P, Smith PD et al. Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res 2010; 70: 8736–8747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smalley KS, Haass NK, Brafford PA, Lioni M, Flaherty KT, Herlyn M . Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther 2006; 5: 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  10. Sahai E, Marshall CJ . Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003; 5: 711–719.

    Article  CAS  PubMed  Google Scholar 

  11. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 2003; 160: 267–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 2008; 135: 510–523.

    Article  CAS  PubMed  Google Scholar 

  13. Arozarena I, Bischof H, Gilby D, Belloni B, Dummer R, Wellbrock C . In melanoma, beta-catenin is a suppressor of invasion. Oncogene 2011; 30: 4531–4543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brunton VG, Frame MC . Src and focal adhesion kinase as therapeutic targets in cancer. Curr Opin Pharmacol 2008; 8: 427–432.

    Article  CAS  PubMed  Google Scholar 

  15. Playford MP, Schaller MD . The interplay between Src and integrins in normal and tumor biology. Oncogene 2004; 23: 7928–7946.

    Article  CAS  PubMed  Google Scholar 

  16. Carragher NO, Walker SM, Scott Carragher LA, Harris F, Sawyer TK, Brunton VG et al. Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene 2006; 25: 5726–5740.

    Article  CAS  PubMed  Google Scholar 

  17. Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP et al. N-(5-chloro-1,3-benzodioxol-4-yl)-7--5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem 2006; 49: 6465–6488.

    Article  CAS  PubMed  Google Scholar 

  18. Green TP, Fennell M, Whittaker R, Curwen J, Jacobs V, Allen J et al. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol Oncol 2009; 3: 248–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buettner R, Mesa T, Vultur A, Lee F, Jove R . Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells. Mol Cancer Res 2008; 6: 1766–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eustace AJ, Crown J, Clynes M, O’Donovan N . Preclinical evaluation of dasatinib, a potent Src kinase inhibitor, in melanoma cell lines. J Transl Med 2008; 6: 53.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dong M, Rice L, Lepler S, Pampo C, Siemann DW . Impact of the Src inhibitor saracatinib on the metastatic phenotype of a fibrosarcoma (KHT) tumor model. Anticancer Res 2010; 30: 4405–4413.

    CAS  PubMed  Google Scholar 

  22. Fackler OT, Grosse R . Cell motility through plasma membrane blebbing. J Cell Biol 2008; 181: 879–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Narumiya S, Tanji M, Ishizaki T . Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 2009; 28: 65–76.

    Article  CAS  PubMed  Google Scholar 

  24. Meierjohann S, Hufnagel A, Wende E, Kleinschmidt MA, Wolf K, Friedl P et al. MMP13 mediates cell cycle progression in melanocytes and melanoma cells: in vitro studies of migration and proliferation. Mol Cancer 2010; 9: 201.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tower GB, Coon CC, Benbow U, Vincenti MP, Brinckerhoff CE . Erk 1/2 differentially regulates the expression from the 1G/2G single nucleotide polymorphism in the MMP-1 promoter in melanoma cells. Biochim Biophys Acta 2002; 1586: 265–274.

    Article  CAS  PubMed  Google Scholar 

  26. Friedl P, Zanker KS, Brocker EB . Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 1998; 43: 369–378.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng Y, Xia Y, Hawke D, Halle M, Tremblay ML, Gao X et al. FAK phosphorylation by ERK primes ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol Cell 2009; 35: 11–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA . Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 1997; 137: 481–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R, Viros A et al. Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 2011; 19: 45–57.

    Article  CAS  PubMed  Google Scholar 

  30. Pullikuth AK, Catling AD . Extracellular signal-regulated kinase promotes Rho-dependent focal adhesion formation by suppressing p190A RhoGAP. Mol Cell Biol 2010; 30: 3233–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bass MD, Morgan MR, Roach KA, Settleman J, Goryachev AB, Humphries MJ . p190RhoGAP is the convergence point of adhesion signals from alpha 5 beta 1 integrin and syndecan-4. J Cell Biol 2008; 181: 1013–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carragher NO, Westhoff MA, Fincham VJ, Schaller MD, Frame MC . A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr Biol 2003; 13: 1442–1450.

    Article  CAS  PubMed  Google Scholar 

  33. Franco S, Perrin B, Huttenlocher A . Isoform specific function of calpain 2 in regulating membrane protrusion. Exp Cell Res 2004; 299: 179–187.

    Article  CAS  PubMed  Google Scholar 

  34. Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA et al. Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 2004; 24: 2499–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang D, Bar-Eli M, Meloche S, Brodt P . Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals. J Biol Chem 2004; 279: 19683–19690.

    Article  CAS  PubMed  Google Scholar 

  36. Lee SH, Bahn JH, Whitlock NC, Baek SJ . Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene 2010; 29: 5182–5192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan C, Wang H, Boyd DD . ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter. J Biol Chem 2002; 277: 10804–10812.

    Article  CAS  PubMed  Google Scholar 

  38. Itoh Y, Takamura A, Ito N, Maru Y, Sato H, Suenaga N et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. Embo J 2001; 20: 4782–4793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Itoh Y . MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life 2006; 58: 589–596.

    Article  CAS  PubMed  Google Scholar 

  40. Sabeh F, Shimizu-Hirota R, Weiss SJ . Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 2009; 185: 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boukerche H, Su ZZ, Prevot C, Sarkar D, Fisher PB . mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Proc Natl Acad Sci USA 2008; 105: 15914–15919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Homsi J, Cubitt CL, Zhang S, Munster PN, Yu H, Sullivan DM et al. Src activation in melanoma and Src inhibitors as therapeutic agents in melanoma. Melanoma Res 2009; 19: 167–175.

    Article  CAS  PubMed  Google Scholar 

  43. Lee JH, Pyon JK, Kim DW, Lee SH, Nam HS, Kim CH et al. Elevated c-Src and c-Yes expression in malignant skin cancers. J Exp Clin Cancer Res 2010; 29: 116.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huang J, Asawa T, Takato T, Sakai R . Cooperative roles of Fyn and cortactin in cell migration of metastatic murine melanoma. J Biol Chem 2003; 278: 48367–48376.

    Article  CAS  PubMed  Google Scholar 

  45. Wellbrock C, Schartl M . Activation of phosphatidylinositol 3-kinase by a complex of p59fyn and the receptor tyrosine kinase Xmrk is involved in malignant transformation of pigment cells. Eur J Biochem 2000; 267: 3513–3522.

    Article  CAS  PubMed  Google Scholar 

  46. Wellbrock C, Weisser C, Geissinger E, Troppmair J, Schartl M . Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J Biol Chem 2002; 277: 6443–6454.

    Article  CAS  PubMed  Google Scholar 

  47. Kluger HM, Dudek AZ, McCann C, Ritacco J, Southard N, Jilaveanu LB et al. A phase 2 trial of dasatinib in advanced melanoma. Cancer 2011; 117: 2202–2208.

    Article  CAS  PubMed  Google Scholar 

  48. Fornier MN, Morris PG, Abbruzzi A, D’Andrea G, Gilewski T, Bromberg J et al. A phase I study of dasatinib and weekly paclitaxel for metastatic breast cancer. Ann Oncol 2011; 22: 2575–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnson ML, Riely GJ, Rizvi NA, Azzoli CG, Kris MG, Sima CS et al. Phase II trial of dasatinib for patients with acquired resistance to treatment with the epidermal growth factor receptor tyrosine kinase inhibitors erlotinib or gefitinib. J Thorac Oncol 2011; 6: 1128–1131.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Renouf DJ, Moore MJ, Hedley D, Gill S, Jonker D, Chen E et al. A phase I/II study of the Src inhibitor saracatinib (AZD0530) in combination with gemcitabine in advanced pancreatic cancer. Invest New Drugs (e-pub ahead of print 18 December 2010).

  51. Geissinger E, Weisser C, Fischer P, Schartl M, Wellbrock C . Autocrine stimulation by osteopontin contributes to antiapoptotic signalling of melanocytes in dermal collagen. Cancer Res 2002; 62: 4820–4828.

    CAS  PubMed  Google Scholar 

  52. Akiyama SK, Yamada SS, Chen WT, Yamada KM . Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol 1989; 109: 863–875.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Astra Zeneca (Macclesfield) for providing us with selumetinib and saracatinib, John Humphries (Manchester) for providing help, advice and the reagents (MB13) for the integrin analyses, Chistoph Ballestrem (Manchester) for the vinculin antibody and Stephen Taylor (Manchester) for support with microscopy. This work was funded by Cancer Research UK (grant no C11591/A10202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Wellbrock.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, J., Arozarena, I., Ehrhardt, M. et al. Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion. Oncogene 32, 86–96 (2013). https://doi.org/10.1038/onc.2012.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.25

Keywords

This article is cited by

Search

Quick links