Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integrin β5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways

Abstract

Cancer progression, response to therapy and metastasis depend on tumor microenvironment. Integrins are cell-adhesion receptors that mediate interactions of cells with extracellular matrix. The αv-β-family of integrins contributes to tumorigenesis, response to therapy and cancer stem cell biology. Thus, understanding the function of specific integrins in cancer is critical for the development of therapeutic approaches targeting integrins. The study investigated the role of integrin β5 in breast carcinomas by depleting integrin β5 using RNA interference and reexpression of integrin β5. Depletion of integrin β5 in triple-negative breast carcinoma cells markedly reduced tumor take, growth and tumor angiogenesis, whereas reexpression of integrin β5 rescued this phenotype. Reduction in tumor angiogenesis is associated with lower expression of vascular endothelial growth factor-A in integrin β5-depleted tumors. Tumor cells deficient in integrin β5 have lower migration and proliferative capacities. Biochemical assays revealed that integrin β5 mediates the Src-focal adhesion kinase and MEK-extracellular signal-regulated kinase signaling events that operate independently, and inhibition of these pathways phenocopies integrin β5 deficiency. Breast carcinoma cells express high levels of integrin β5, whereas expression of integrin β3 is limited to stromal compartments and integrin β6 is lost in metastatic cells. Together, these findings show a critical role for integrin β5 in the tumorigenic potential of breast carcinoma cells and therapeutic targeting of integrin β5 is especially attractive for triple-negative breast carcinomas, which are refractory to most of the current therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . Cancer Statistics 2007 CA Cancer J Clin 2007; 57: 43–66.

    Article  Google Scholar 

  2. Colombo P-E, Milanezi F, Weigelt B, Reis-Filho J . Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Research 2011; 13: 212.

    Article  Google Scholar 

  3. Alvarez R . Present and future evolution of advanced breast cancer therapy. Breast Cancer Res 2010; 12 (Suppl 2): S1.

    Article  Google Scholar 

  4. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 2010; 29: 2013–2023.

    Article  CAS  Google Scholar 

  5. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 2010; 464: 999–1005.

    Article  CAS  Google Scholar 

  6. Takada Y, Ye X, Simon S . The integrins. Genome Biol 2007; 8: 215.

    Article  Google Scholar 

  7. Desgrosellier JS, Cheresh DA . Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10: 9–22.

    Article  CAS  Google Scholar 

  8. Bianchi A, Gervasi M, Bakin A . Role of beta5-integrin in epithelial-mesenchymal transition in response to TGF-beta. Cell Cycle 2010; 9: 1647–1659.

    Article  CAS  Google Scholar 

  9. Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA . Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 2003; 162: 933–943.

    Article  CAS  Google Scholar 

  10. Maubant S, Cruet-Hennequart S, Poulain L, Carreiras F, Sichel F, Luis J et al. Altered adhesion properties and alphav integrin expression in a cisplatin-resistant human ovarian carcinoma cell line. Int J Cancer 2002; 97: 186–194.

    Article  CAS  Google Scholar 

  11. Monferran S, Skuli N, Delmas C, Favre G, Bonnet J, Cohen-Jonathan-Moyal E et al. Alphavbeta3 and alphavbeta5 integrins control glioma cell response to ionising radiation through ILK and RhoB. Int J Cancer 2008; 123: 357–364.

    Article  CAS  Google Scholar 

  12. Luo M, Guan J-L . Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett 2010; 289: 127–139.

    Article  CAS  Google Scholar 

  13. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC . The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer 2005; 5: 505–515.

    Article  CAS  Google Scholar 

  14. Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ et al. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol 2002; 157: 149–160.

    Article  CAS  Google Scholar 

  15. Lim Y, Han I, Jeon J, Park H, Bahk YY, Oh ES . Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J Biol Chem 2004; 279: 29060–29065.

    Article  CAS  Google Scholar 

  16. Lin TH, Aplin AE, Shen Y, Chen Q, Schaller M, Romer L et al. Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. J Cell Biol 1997; 136: 1385–1395.

    Article  CAS  Google Scholar 

  17. Schlaepfer DD, Jones KC, Hunter T . Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 1998; 18: 2571–2585.

    Article  CAS  Google Scholar 

  18. Schlaepfer DD, Hanks SK, Hunter T, van der Geer P . Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 1994; 372: 786–791.

    Article  CAS  Google Scholar 

  19. Yom C, Noh D-Y, Kim W, Kim H . Clinical significance of high focal adhesion kinase gene copy number and overexpression in invasive breast cancer. Breast Cancer Res Treat 2011; 128: 647–655.

    Article  CAS  Google Scholar 

  20. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 2006; 9: 121–132.

    Article  CAS  Google Scholar 

  21. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14: 518–527.

    Article  CAS  Google Scholar 

  22. Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM . A critical role of tropomyosins in TGF-{beta} regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell 2004; 15: 4682–4694.

    Article  CAS  Google Scholar 

  23. Frisch SM, Screaton RA . Anoikis mechanisms. Curr Opin Cell Biol 2001; 13: 555–562.

    Article  CAS  Google Scholar 

  24. Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351–379.

    Article  CAS  Google Scholar 

  25. Meyer T, Marshall JF, Hart IR . Expression of alphav integrins and vitronectin receptor identity in breast cancer cells. Br J Cancer 1998; 77: 530–536.

    Article  CAS  Google Scholar 

  26. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C . Clonogenic assay of cells in vitro. Nat Protoc 2006; 1: 2315–2319.

    Article  CAS  Google Scholar 

  27. Turner CE . Paxillin and focal adhesion signalling. Nat Cell Biol 2000; 2: E231–E236.

    Article  CAS  Google Scholar 

  28. Frey RS, Mulder KM . Involvement of ERK 2 and stress-activated protein kinase/JNK activation by TGF-beta in the negative growth control of breast cancer cells. Cancer Res 1997; 57: 628–633.

    CAS  PubMed  Google Scholar 

  29. Mucsi I, Skorecki KL, Goldberg HJ . ERK and the small GTP-binding protein, Rac, contribute to the effects of TGF-beta1 on gene expression. J Biol Chem 1996; 271: 16567–16572.

    Article  CAS  Google Scholar 

  30. Dumont N, Bakin AV, Arteaga CL . Autocrine transforming growth factor-beta signaling mediates smad-independent motility in human cancer cells. J Biol Chem 2003; 278: 3275–3285.

    Article  CAS  Google Scholar 

  31. Ricono JM, Huang M, Barnes LA, Lau SK, Weis SM, Schlaepfer DD et al. Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res 2009; 69: 1383–1391.

    Article  CAS  Google Scholar 

  32. Moro L, Dolce L, Cabodi S, Bergatto E, Erba EB, Smeriglio M et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 2002; 277: 9405–9414.

    Article  CAS  Google Scholar 

  33. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004; 47: 6658–6661.

    Article  CAS  Google Scholar 

  34. Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C et al. Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 2007; 282: 14845–14852.

    Article  CAS  Google Scholar 

  35. Wary KK, Mariotti A, Zurzolo C, Giancotti FG . A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 1998; 94: 625–634.

    Article  CAS  Google Scholar 

  36. Brunton VG, Avizienyte E, Fincham VJ, Serrels B, Metcalf CA, Sawyer TK et al. Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 2005; 65: 1335–1342.

    Article  CAS  Google Scholar 

  37. Mitra SK, Mikolon D, Molina JE, Hsia DA, Hanson DA, Chi A et al. Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene 2006; 25: 5969–5984.

    Article  CAS  Google Scholar 

  38. Schneider BP, Sledge GW . Drug insight: VEGF as a therapeutic target for breast cancer. Nat Clin Pract Oncol 2007; 4: 181–189.

    Article  CAS  Google Scholar 

  39. Lee TH, Seng S, Sekine M, Hinton C, Fu Y, Avraham HK et al. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 2007; 4: e186.

    Article  Google Scholar 

  40. Abu-Ghazaleh R, Kabir J, Jia H, Lobo M, Zachary I . Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem J 2001; 360 (Pt 1): 255–264.

    Article  CAS  Google Scholar 

  41. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  Google Scholar 

  42. Ogata H, Sato H, Takatsuka J, De Luca LM . Human breast cancer MDA-MB-231 cells fail to express the neurofibromin protein, lack its type I mRNA isoform and show accumulation of P-MAPK and activated Ras. Cancer Lett 2001; 172: 159–164.

    Article  CAS  Google Scholar 

  43. Ricono JM, Huang M, Barnes LA, Lau SK, Weis SM, Schlaepfer DD et al. Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res 2009; 69: 1383–1391.

    Article  CAS  Google Scholar 

  44. Lim Y, Han I, Jeon J, Park H, Bahk Y-Y, Oh E-S . Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for ras transformation of fibroblasts. J Biol Chem 2004; 279: 29060–29065.

    Article  CAS  Google Scholar 

  45. Ishigaki T, Imanaka-Yoshida K, Shimojo N, Matsushima S, Taki W, Yoshida T . Tenascin-C enhances crosstalk signaling of integrin αvÎ23/PDGFR-Î2 complex by SRC recruitment promoting PDGF-induced proliferation and migration in smooth muscle cells. J Cell Physiol 2011; 226: 2617–2624.

    Article  CAS  Google Scholar 

  46. Feig LA, Cooper GM . Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins. Mol Cell Biol 1988; 8: 2472–2478.

    Article  CAS  Google Scholar 

  47. Zhang H, Li Z, Viklund EK, Stromblad S . P21-activated kinase 4 interacts with integrin alpha v beta 5 and regulates alpha v beta 5-mediated cell migration. J Cell Biol 2002; 158: 1287–1297.

    Article  CAS  Google Scholar 

  48. Berditchevski F . Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 2001; 114 (Pt 23): 4143–4151.

    CAS  PubMed  Google Scholar 

  49. Safina A, Vandette E, Bakin AV . ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene 2007; 26: 2407–2422.

    Article  CAS  Google Scholar 

  50. Safina A, Ren M-Q, Vandette E, Bakin AV . TAK1 is required for TGF-[beta]1-mediated regulation of matrix metalloproteinase-9 and metastasis. Oncogene 2008; 27: 1198–1207.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NYSDOH-HSRB Peter T Rowley Breast Cancer Project and in part by RPCI Cancer Center Support Grant CA 16056. We thank Dr Irwin Gelman for his helpful discussion of the manuscript, Drs Raymond Birge, Jianmin Zhang and Yahao Bu for providing reagents and Drs Kitty De Jong and Janice Hoffmann (RPCI flow cytometry facility) for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A V Bakin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi-Smiraglia, A., Paesante, S. & Bakin, A. Integrin β5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways. Oncogene 32, 3049–3058 (2013). https://doi.org/10.1038/onc.2012.320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.320

Keywords

This article is cited by

Search

Quick links