Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MEMO1, a new IRS1-interacting protein, induces epithelial–mesenchymal transition in mammary epithelial cells

Abstract

MEMO1 (mediator of ErbB2-driven cell motility 1) regulates HER2-dependent cell migration. Increased MEMO1 expression is associated with cancer aggressiveness. Here, we found that MEMO1 is also involved in breast carcinogenesis via regulating insulin-like growth factor-I receptor-dependent signaling events. We showed that MEMO1 binds to insulin receptor substrate 1, activates the downstream PI3K/Akt signaling pathway, leads to upregulation of Snail1 and thereby triggers the epithelial-mesenchymal transition (EMT) program. In addition, MEMO1 overexpression is accompanied by growth factor-independent proliferation, anchorage-independent growth in soft agar, and enhanced metastatic potential. Together, these findings suggest that MEMO1 acts as an oncogene and is a potential therapeutic target for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Marone R, Hess D, Dankort D, Muller WJ, Hynes NE, Badache A . Memo mediates ErbB2-driven cell motility. Nat Cell Biol 2004; 6: 515–522.

    Article  CAS  PubMed  Google Scholar 

  2. Zaoui K, Honore S, Isnardon D, Braguer D, Badache A . Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells. J Cell Biol 2008; 183: 401–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zaoui K, Benseddik K, Daou P, Salaun D, Badache A . ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells. Proc Natl Acad Sci USA 2010; 107: 18517–18522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qiu C, Lienhard S, Hynes NE, Badache A, Leahy DJ . Memo is homologous to nonheme iron dioxygenases and binds an ErbB2-derived phosphopeptide in its vestigial active site. J Biol Chem 2008; 283: 2734–2740.

    Article  CAS  PubMed  Google Scholar 

  5. White MF . Regulating insulin signaling and beta-cell function through IRS proteins. Can J Physiol Pharmacol 2006; 84: 725–737.

    Article  CAS  PubMed  Google Scholar 

  6. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991; 352: 73–77.

    Article  CAS  PubMed  Google Scholar 

  7. Mardilovich K, Pankratz SL, Shaw LM . Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 2009; 7: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gibson SL, Ma Z, Shaw LM . Divergent roles for IRS-1 and IRS-2 in breast cancer metastasis. Cell Cycle 2007; 6: 631–637.

    Article  CAS  PubMed  Google Scholar 

  9. Bergmann U, Funatomi H, Kornmann M, Beger HG, Korc M . Increased expression of insulin receptor substrate-1 in human pancreatic cancer. Biochem Biophys Res Commun 1996; 220: 886–890.

    Article  CAS  PubMed  Google Scholar 

  10. Kornmann M, Maruyama H, Bergmann U, Tangvoranuntakul P, Beger HG, White MF et al. Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer. Cancer Res 1998; 58: 4250–4254.

    CAS  PubMed  Google Scholar 

  11. Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM . Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 2002; 62: 2942–2950.

    CAS  PubMed  Google Scholar 

  12. Hoang CD, Zhang X, Scott PD, Guillaume TJ, Maddaus MA, Yee D et al. Selective activation of insulin receptor substrate-1 and -2 in pleural mesothelioma cells: association with distinct malignant phenotypes. Cancer Res 2004; 64: 7479–7485.

    Article  CAS  PubMed  Google Scholar 

  13. Boissan M, Beurel E, Wendum D, Rey C, Lecluse Y, Housset C et al. Overexpression of insulin receptor substrate-2 in human and murine hepatocellular carcinoma. Am J Pathol 2005; 167: 869–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cantarini MC, de la Monte SM, Pang M, Tong M, D'Errico A, Trevisani F et al. Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms. Hepatology 2006; 44: 446–457.

    Article  CAS  PubMed  Google Scholar 

  15. Szabolcs M, Keniry M, Simpson L, Reid LJ, Koujak S, Schiff SC et al. Irs2 inactivation suppresses tumor progression in Pten+/− mice. Am J Pathol 2009; 174: 276–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rocha RL, Hilsenbeck SG, Jackson JG, VanDenBerg CL, Weng C, Lee AV et al. Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Cancer Res 1997; 3: 103–109.

    CAS  PubMed  Google Scholar 

  17. Del Valle L, Enam S, Lassak A, Wang JY, Croul S, Khalili K et al. Insulin-like growth factor I receptor activity in human medulloblastomas. Clin Cancer Res 2002; 8: 1822–1830.

    CAS  PubMed  Google Scholar 

  18. Ravikumar S, Perez-Liz G, Del Vale L, Soprano DR, Soprano KJ . Insulin receptor substrate-1 is an important mediator of ovarian cancer cell growth suppression by all-trans retinoic acid. Cancer Res 2007; 67: 9266–9275.

    Article  CAS  PubMed  Google Scholar 

  19. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  20. Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, Zhang X et al. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 2006; 26: 9302–9314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim HJ, Litzenburger BC, Cui X, Delgado DA, Grabiner BC, Lin X et al. Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 2007; 27: 3165–3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalinina T, Gungor C, Thieltges S, Moller-Krull M, Penas EM, Wicklein D et al. Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung. BMC Cancer 2010; 10: 295.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hannafon BN, Sebastiani P, de Las Morenas A, Lu J, Rosenberg CL . Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Res 2011; 13: R24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pelicci G, Dente L, De Giuseppe A, Verducci-Galletti B, Giuli S, Mele S et al. A family of Shc related proteins with conserved PTB, CH1 and SH2 regions. Oncogene 1996; 13: 633–641.

    CAS  PubMed  Google Scholar 

  25. Sakai R, Henderson JT, O'Bryan JP, Elia AJ, Saxton TM, Pawson T . The mammalian ShcB and ShcC phosphotyrosine docking proteins function in the maturation of sensory and sympathetic neurons. Neuron 2000; 28: 819–833.

    Article  CAS  PubMed  Google Scholar 

  26. Fagiani E, Giardina G, Luzi L, Cesaroni M, Quarto M, Capra M et al. RaLP, a new member of the Src homology and collagen family, regulates cell migration and tumor growth of metastatic melanomas. Cancer Res 2007; 67: 3064–3073.

    Article  CAS  PubMed  Google Scholar 

  27. Hemi R, Paz K, Wertheim N, Karasik A, Zick Y, Kanety H . Transactivation of ErbB2 and ErbB3 by tumor necrosis factor-alpha and anisomycin leads to impaired insulin signaling through serine/threonine phosphorylation of IRS proteins. J Biol Chem 2002; 277: 8961–8969.

    Article  CAS  PubMed  Google Scholar 

  28. Yenush L, Makati KJ, Smith-Hall J, Ishibashi O, Myers MG, White MF . The pleckstrin homology domain is the principal link between the insulin receptor and IRS-1. J Biol Chem 1996; 271: 24300–24306.

    Article  CAS  PubMed  Google Scholar 

  29. Backer JM, Wjasow C, Zhang Y . In vitro binding and phosphorylation of insulin receptor substrate 1 by the insulin receptor. Role of interactions mediated by the phosphotyrosine-binding domain and the pleckstrin-homology domain. Eur J Biochem 1997; 245: 91–96.

    Article  CAS  PubMed  Google Scholar 

  30. White MF . The insulin signalling system and the IRS proteins. Diabetologia 1997; 40 (Suppl 2): S2–17.

    Article  CAS  PubMed  Google Scholar 

  31. Hanke S, Mann M . The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol Cell Proteomics 2009; 8: 519–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Myers MG, Mendez R, Shi P, Pierce JH, Rhoads R, White MF . The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling. J Biol Chem 1998; 273: 26908–26914.

    Article  CAS  PubMed  Google Scholar 

  33. Sun XJ, Crimmins DL, Myers MG, Miralpeix M, White MF . Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 1993; 13: 7418–7428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Debnath J, Brugge JS . Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 2005; 5: 675–688.

    Article  CAS  PubMed  Google Scholar 

  35. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 2006; 103: 12405–12410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    Article  CAS  PubMed  Google Scholar 

  37. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sabbah M, Emami S, Redeuilh G, Julien S, Prevost G, Zimber A et al. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat 2008; 11: 123–151.

    Article  CAS  PubMed  Google Scholar 

  39. Werner H, Le Roith D . New concepts in regulation and function of the insulin-like growth factors: implications for understanding normal growth and neoplasia. Cell Mol Life Sci 2000; 57: 932–942.

    Article  CAS  PubMed  Google Scholar 

  40. Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D . Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 1998; 121: 19–26.

    Article  CAS  PubMed  Google Scholar 

  41. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  42. LeRoith D, Roberts CT . The insulin-like growth factor system and cancer. Cancer Lett 2003; 195: 127–137.

    Article  CAS  PubMed  Google Scholar 

  43. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  45. Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ . Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 2005; 280: 11740–11748.

    Article  CAS  PubMed  Google Scholar 

  46. Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM . Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 2005; 168: 29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP . Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 2009; 15: 416–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F et al. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007; 26: 7445–7456.

    Article  CAS  PubMed  Google Scholar 

  49. Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H . NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 2007; 26: 711–724.

    Article  CAS  PubMed  Google Scholar 

  50. Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 2002; 277: 39209–39216.

    Article  CAS  PubMed  Google Scholar 

  51. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7: 1267–1278.

    Article  CAS  PubMed  Google Scholar 

  52. Grooteclaes ML, Frisch SM . Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19: 3823–3828.

    Article  CAS  PubMed  Google Scholar 

  53. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  54. Maehama T, Dixon JE . The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273: 13375–13378.

    Article  CAS  PubMed  Google Scholar 

  55. Meira M, Masson R, Stagljar I, Lienhard S, Maurer F, Boulay A et al. Memo is a cofilin-interacting protein that influences PLCgamma1 and cofilin activities, and is essential for maintaining directionality during ErbB2-induced tumor-cell migration. J Cell Sci 2009; 122: 787–797.

    Article  CAS  PubMed  Google Scholar 

  56. Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 2009; 15: 402–415.

    Article  CAS  PubMed  Google Scholar 

  57. Sorokin AV, Selyutina AA, Skabkin MA, Guryanov SG, Nazimov IV, Richard C et al. Proteasome-mediated cleavage of the Y-box-binding protein 1 is linked to DNA-damage stress response. EMBO J 2005; 24: 3602–3612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all our colleagues in the Chen laboratory for insightful discussions and technical assistance. We thank Dr Douglas Yee at the University of Minnesota for sharing hIRS2 cDNA and Dr Cosima Baldari at the University of Siena (Italy) for sharing ShcA(p66) cDNA. This work was supported in part by an Era of Hope Research award to JC (W81XWH-09-1-0409). JC is also a recipient of an Era of Hope Scholar award from the Department of Defense (W81XWH-05-1-0470). This work was supported by MD Anderson’s Cancer Center Support Grant (CA016672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, A., Chen, J. MEMO1, a new IRS1-interacting protein, induces epithelial–mesenchymal transition in mammary epithelial cells. Oncogene 32, 3130–3138 (2013). https://doi.org/10.1038/onc.2012.327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.327

Keywords

This article is cited by

Search

Quick links