Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MAP kinase signaling and inhibition in melanoma

A Correction to this article was published on 03 March 2021

This article has been updated

Abstract

The mitogen-activated protein kinase (MAPK) pathway is critical to oncogenic signaling in the majority of patients with malignant melanoma. Driver mutations in both NRAS and BRAF have important implications for prognosis and treatment. The development of inhibitors to mediators of the MAPK pathway, including those to CRAF, BRAF, and MEK, has led to major advances in the treatment of patients with melanoma. In particular, the selective BRAF inhibitor vemurafenib has been shown to improve overall survival in patients with tumors harboring BRAF mutations. However, the duration of benefit is limited in many patients and highlights the need for understanding the limitations of therapy in order to devise more effective strategies. MEK inhibitors have proven to particularly active in BRAF mutant melanomas also. Emerging knowledge about mechanisms of resistance as well as a more complete understanding of the biology of MAPK pathway signaling provides insight into rational combination regimens and sequences of molecularly targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Change history

References

  1. Omholt K, Platz A, Kanter L, Ringborg U, Hansson J . NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res 2003; 9: 6483–6488.

    CAS  Google Scholar 

  2. Falchook GS, Long GV, Kurzrock R, Kim KB, Arkenau TH, Brown MP et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 2012; 379: 1893–1901.

    CAS  Google Scholar 

  3. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    CAS  Google Scholar 

  4. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809–819.

    CAS  Google Scholar 

  5. Infante JR, Gordon MS, Flaherty KT, Cox DS, DeMarini DJ, Morris SR et al. Safety and efficacy results from the first-in-human study of the oral MEK 1/2 inhibitor GSK1120212. J Clin Oncol 2010; 28 (Suppl): abstract 8503.

    Google Scholar 

  6. Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 2011; 29: 1239–1246.

    Google Scholar 

  7. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 2012; 367: 107–114.

    CAS  Google Scholar 

  8. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012; 366: 707–714.

    CAS  Google Scholar 

  9. Ascierto PACB, Sanjiv SA, Dirk S, Carla Van H, Paola Q, Christian UB et al. Efficacy and safety of oral MEK162 in patients with locally advanced and unresectable or metastatic cutaneous melanoma harboring BRAFV600 or NRAS mutations. J Clin Oncol 2012; 30 (Suppl): abstract 8511.

    Google Scholar 

  10. Hauschild Axel JJG, VD Lev, Jouary T, Gutzmer R, Millward M, Rutkowski P et al. Phase III, randomized, open-label, multicenter trial (BREAK-3) comparing the BRAF kinase inhibitor dabrafenib (GSK2118436) with dacarbazine (DTIC) in patients with BRAFV600E-mutated melanoma. J Clin Oncol 2012; 30 (Suppl): abstract LBA8500.

    Google Scholar 

  11. Weber JS, Flaherty KT, Jeffrey RI, Gerald SF, Richard K, Adil D et al. Updated safety and efficacy results from a phase I/II study of the oral BRAF inhibitor dabrafenib (GSK2118436) combined with the oral MEK 1/2 inhibitor trametinib (GSK1120212) in patients with BRAFi-naive metastatic melanoma. J Clin Oncol 2012; 30 (Suppl): abstract 8510.

    Google Scholar 

  12. DR Trefzer UM, Lebbe A, Siegfried C, Arya A, Guckert N, Schadendorf M et al. BREAK-2: a Phase IIA trial of the selective BRAF kinase inhibitor GSK2118436 in patients with BRAF mutation-positive (V600E/K) metastatic melanoma. Proceedings of the Society for Melanoma Research Congress 2011. Hollywood, FL.

  13. Furge KA, Kiewlich D, Le P, Vo MN, Faure M, Howlett AR et al. Suppression of Ras-mediated tumorigenicity and metastasis through inhibition of the Met receptor tyrosine kinase. Proc Natl Acad Sci USA 2001; 98: 10722–10727.

    CAS  Google Scholar 

  14. Vakiani E, DB Solit . KRAS and BRAF: drug targets and predictive biomarkers. J Pathol 2011; 223: 219–229.

    CAS  Google Scholar 

  15. Jakob JA, Bassett RL, Ng CS, Curry JL, Joseph RW, Alvarado GC et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer (e-pub ahead of print 16 December 2011; doi:10.1002/cncr.26724).

    Google Scholar 

  16. Bardeesy N, Kim M, Xu J, Kim RS, Shen Q, Bosenberg MW et al. Role of epidermal growth factor receptor signaling in RAS-driven melanoma. Mol Cell Biol 2005; 25: 4176–4188.

    CAS  Google Scholar 

  17. Beeram M, Patnaik A, Rowinsky EK . Raf: a strategic target for therapeutic development against cancer. J Clin Oncol 2005; 23: 6771–6790.

    CAS  Google Scholar 

  18. Monsel G, Ortonne N, Bagot M, Bensussan A, Dumaz N . c-Kit mutants require hypoxia-inducible factor 1alpha to transform melanocytes. Oncogene 2010; 29: 227–236.

    CAS  Google Scholar 

  19. Marquette A, Andre J, Bagot M, Bensussan A, Dumaz NERK . and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat Struct Mol Biol 2011; 18: 584–591.

    CAS  Google Scholar 

  20. Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 2006; 66: 9483–9491.

    CAS  Google Scholar 

  21. Moodie SA, Willumsen BM, Weber MJ, Wolfman A . Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 1993; 260: 1658–1661.

    CAS  Google Scholar 

  22. Winkler DG, Cutler RE, Drugan JK, Campbell S, Morrison DK, Cooper JA . Identification of residues in the cysteine-rich domain of Raf-1 that control Ras binding and Raf-1 activity. J Biol Chem 1998; 273: 21578–21584.

    CAS  Google Scholar 

  23. Chong H, Guan KL . Regulation of Raf through phosphorylation and N terminus-C terminus interaction. J Biol Chem 2003; 278: 36269–36276.

    CAS  Google Scholar 

  24. Garnett MJ, Rana S, Paterson H, Barford D, Marais R . Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 2005; 20: 963–969.

    CAS  Google Scholar 

  25. Terai K, Matsuda M . The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. EMBO J 2006; 25: 3556–3564.

    CAS  Google Scholar 

  26. Chen J, Fujii K, Zhang L, Roberts T, Fu H . Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 2001; 98: 7783–7788.

    CAS  Google Scholar 

  27. Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR et al. Raf induces NF-kappaB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 2000; 97: 4615–4620.

    CAS  Google Scholar 

  28. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N . RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010; 464: 427–430.

    CAS  Google Scholar 

  29. Liu J, Suresh Kumar KG, Yu D, Molton SA, McMahon M, Herlyn M et al. Oncogenic BRAF regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells. Oncogene 2007; 26: 1954–1958.

    CAS  Google Scholar 

  30. Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 2009; 33: 237–247.

    CAS  Google Scholar 

  31. Fischer A, Hekman M, Kuhlmann J, Rubio I, Wiese S, Rapp UR . B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding. J Biol Chem 2007; 282: 26503–26516.

    CAS  Google Scholar 

  32. Tran NH, Wu X, Frost JA . B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. J Biol Chem 2005; 280: 16244–16253.

    CAS  Google Scholar 

  33. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    CAS  Google Scholar 

  34. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33: 19–20.

    CAS  Google Scholar 

  35. Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 2003; 63: 3883–3885.

    CAS  Google Scholar 

  36. Lin J, Goto Y, Murata H, Sakaizawa K, Uchiyama A, Saida T et al. Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression. Br J Cancer 2011; 104: 464–468.

    CAS  Google Scholar 

  37. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 2009; 15: 294–303.

    CAS  Google Scholar 

  38. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41: 544–552.

    CAS  Google Scholar 

  39. Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP . Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 2005; 65: 2412–2421.

    Article  CAS  Google Scholar 

  40. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006; 5: 835–844.

    CAS  Google Scholar 

  41. Hauschild A, Agarwala SS, Trefzer U, Hogg D, Robert C, Hersey P et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol 2009; 27: 2823–2830.

    CAS  Google Scholar 

  42. Amaravadi RK, Schuchter LM, McDermott DF, Kramer A, Giles L, Gramlich K et al. Phase II trial of temozolomide and sorafenib in advanced melanoma patients with or without brain metastases. Clin Cancer Res 2009; 15: 7711–7718.

    CAS  Google Scholar 

  43. Eisen T, Ahmad T, Flaherty KT, Gore M, Kaye S, Marais R et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 2006; 95: 581–586.

    CAS  Google Scholar 

  44. Flaherty KT, Flaherty LE, Wright JJ, Leming PD, Kirkwood JM . Final results of E2603: a double-blind, randomized phase III trial comparing carboplatin ©/paclitaxel (P) with or without sorafenib (S) in metastatic melanoma. J Clin Oncol 2010; 28 (Suppl): abstract 8511.

    Google Scholar 

  45. Flaherty KT, Schiller J, Schuchter LM, Liu G, Tuveson DA, Redlinger M et al. A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res 2008; 14: 4836–4842.

    CAS  Google Scholar 

  46. Margolin KA, Moon J, Flaherty LE, Lao CD, Akerley WL, Othus M et al. Randomized phase II trial of sorafenib with temsirolimus or tipifarnib in untreated metastatic melanoma (S0438). Clin Cancer Res 2012; 18: 1129–1137.

    CAS  Google Scholar 

  47. Ratain MJ, Eisen T, Stadler WM, Flaherty KT, Kaye SB, Rosner GL et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 2006; 24: 2505–2512.

    CAS  Google Scholar 

  48. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010; 467: 596–599.

    CAS  Google Scholar 

  49. Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 2010; 107: 14903–14908.

    CAS  Google Scholar 

  50. Kirkwood JM, Long GV, Trefzer U, Davies MA, Ascierto PA, Chapman PB et al. BREAK-MB: a phase II study assessing overall intracranial response rate (OIRR) to dabrafenib (GSK2118436) in patients (pts) with BRAF V600E/k mutation-positive melanoma with brain metastases (mets). J Clin Oncol 2012; 30 (Suppl): abstract 8501.

    Google Scholar 

  51. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006; 439: 358–362.

    CAS  Google Scholar 

  52. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 2008; 26: 2139–2146.

    CAS  Google Scholar 

  53. Banerji U, Camidge DR, Verheul HM, Agarwal R, Sarker D, Kaye SB et al. The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clin Cancer Res 2010; 16: 1613–1623.

    CAS  Google Scholar 

  54. Delord J, Taamma A, Faivre SJ, Besse-Hammer T, Italiano A, Vignaud C et al. First-in-human phase I safety, pharmacokinetic (PK), and pharmacodynamic (PD) analysis of the oral MEK-inhibitor AS703026 (two regimens [R]) in patients (pts) with advanced solid tumors. J Clin Oncol 2010; 28 (Suppl): abstract 2504.

    Google Scholar 

  55. LoRusso PM, Krishnamurthi SS, Rinehart JJ, Nabell LM, Malburg L, Chapman PB et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res 2010; 16: 1924–1937.

    CAS  Google Scholar 

  56. Patel S, Vaughn C, Gonzalez N, Papadopoulos NE, Liu P, Infante JR et al. Clinical responses to AZD6244 (ARRY-142886)-based combination therapy stratified by gene mutations in patients with metastatic melanoma. J Clin Oncol 2010; 28 (Suppl): abstract 8501.

    Google Scholar 

  57. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N, Facon T et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 2002; 100: 1014–1018.

    CAS  Google Scholar 

  58. Roumiantsev S, Shah NP, Gorre ME, Nicoll J, Brasher BB, Sawyers CL et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci USA 2002; 99: 10700–10705.

    CAS  Google Scholar 

  59. Wardelmann E, Merkelbach-Bruse S, Pauls K, Thomas N, Schildhaus HU, Heinicke T et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 2006; 12: 1743–1749.

    CAS  Google Scholar 

  60. Tap WD, Gong KW, Dering J, Tseng Y, Ginther C, Pauletti G et al. Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia 2010; 12: 637–649.

    CAS  Google Scholar 

  61. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010; 468: 968–972.

    CAS  Google Scholar 

  62. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468: 973–977.

    CAS  Google Scholar 

  63. Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 2008; 68: 4853–4861.

    CAS  Google Scholar 

  64. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 2011; 29: 3085–3096.

    CAS  Google Scholar 

  65. Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA 2009; 106: 20411–20416.

    CAS  Google Scholar 

  66. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011; 480: 387–390.

    CAS  Google Scholar 

  67. Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 2012; 3: 724.

    Google Scholar 

  68. Xing F, Persaud Y, Pratilas CA, Taylor BS, Janakiraman M, She QB et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene 2012; 31: 446–457.

    CAS  Google Scholar 

  69. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1 R/PI3K. Cancer Cell 2010; 18: 683–695.

    CAS  Google Scholar 

  70. Nathanson KL, Letrero R, D'Andrea KP, O'Day S, Infante JR, Falchook GS et al. Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor GSK2118436 (GSK436). J Clin Oncol 2011; 29 (Suppl): abstract 8501.

    Google Scholar 

  71. Smalley KS, Lioni M, Dalla PM, Xiao M, Desai B, Egyhazi S et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther 2008; 7: 2876–2883.

    Article  CAS  Google Scholar 

  72. Vergani E, Vallacchi V, Frigerio S, Deho P, Mondellini P, Perego P et al. Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032. Neoplasia 2011; 13: 1132–1142.

    CAS  Google Scholar 

  73. Strausman RT, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A et al. Tumor microenviroment contributes to RAF-inhibitor resistance through HGF secretion. Nature (e-pub ahead of print 4 July 2012; doi: 10.1038/nature11183).

    CAS  Google Scholar 

  74. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010; 464: 431–435.

    CAS  Google Scholar 

  75. Halaban R, Zhang W, Bacchiocchi A, Cheng E, Parisi F, Ariyan S et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res 2010; 23: 190–200.

    CAS  Google Scholar 

  76. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010; 140: 209–221.

    CAS  Google Scholar 

  77. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 2012; 366: 207–215.

    CAS  Google Scholar 

  78. Corominas M, Kamino H, Leon J, Pellicer A . Oncogene activation in human benign tumors of the skin (keratoacanthomas): is HRAS involved in differentiation as well as proliferation? Proc Natl Acad Sci USA 1989; 86: 6372–6376.

    CAS  Google Scholar 

  79. Solit DB, Rosen N . Resistance to BRAF inhibition in melanomas. N Engl J Med 2011; 364: 772–774.

    CAS  Google Scholar 

  80. Sosman JA, MS Lynn, DL Karl, AM Grant, LC Charles, JM Stergios et al. Analysis of molecular mechanisms of response and resistance to vemurafenib (vem) in BRAFV600E melanoma. J Clin Oncol 2012; 30 (Suppl): abstract 8503.

    Google Scholar 

  81. Kaplan FM, Shao Y, Mayberry MM, Aplin AE . Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene 2011; 30: 366–371.

    CAS  Google Scholar 

  82. Boisvert-Adamo K, Aplin AE . Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 2008; 27: 3301–3312.

    CAS  Google Scholar 

  83. Cartlidge RA, Thomas GR, Cagnol S, Jong KA, Molton SA, Finch AJ et al. Oncogenic BRAF(V600E) inhibits BIM expression to promote melanoma cell survival. Pigment Cell Melanoma Res 2008; 21: 534–544.

    CAS  Google Scholar 

  84. Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 2011; 71: 2750–2760.

    CAS  Google Scholar 

  85. VanBrocklin MW, Verhaegen M, Soengas MS, Holmen SL . Mitogen-activated protein kinase inhibition induces translocation of Bmf to promote apoptosis in melanoma. Cancer Res 2009; 69: 1985–1994.

    CAS  Google Scholar 

  86. Zhao Y, Zhang Y, Yang Z, Li A, Dong J . Simultaneous knockdown of BRAF and expression of INK4A in melanoma cells leads to potent growth inhibition and apoptosis. Biochem Biophys Res Commun 2008; 370: 509–513.

    CAS  Google Scholar 

  87. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    CAS  Google Scholar 

  88. Verhaegen M, Bauer JA, Martin de la Vega C, Wang G, Wolter KG, Brenner JC et al. A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res 2006; 66: 11348–11359.

    CAS  Google Scholar 

  89. Chen S, Dai Y, Harada H, Dent P, Grant S . Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 2007; 67: 782–791.

    CAS  Google Scholar 

  90. Cragg MS, Jansen ES, Cook M, Harris C, Strasser A, Scott CL . Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic. J Clin Invest 2008; 118: 3651–3659.

    CAS  Google Scholar 

  91. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    CAS  Google Scholar 

  92. Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364: 2517–2526.

    CAS  Google Scholar 

  93. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. N Engl J Med 2012; 366: 2443–2454.

    CAS  Google Scholar 

  94. Comin-Anduix B, Chodon T, Sazegar H, Matsunaga D, Mock S, Jalil J et al. The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin Cancer Res 2010; 16: 6040–6048.

    CAS  Google Scholar 

  95. Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 2010; 70: 5213–5219.

    CAS  Google Scholar 

  96. Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res 2012; 18: 1386–1394.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Flaherty.

Ethics declarations

Competing interests

Dr Flaherty has served as a consultant to Roche/Genentech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, R., Flaherty, K. MAP kinase signaling and inhibition in melanoma. Oncogene 32, 2373–2379 (2013). https://doi.org/10.1038/onc.2012.345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.345

Keywords

This article is cited by

Search

Quick links