Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rac1 is required for Prkar1a-mediated Nf2 suppression in Schwann cell tumors

Abstract

Schwannomas are peripheral nerve sheath tumors that often occur in the setting of an inherited tumor predisposition syndrome, including neurofibromatosis types 1 (NF1) and 2 (NF2), familial schwannomatosis and Carney complex. Loss of the NF2 tumor suppressor (encoding NF2, or Merlin) is associated with upregulation of the Rac1 small GTPase, which is thought to have a key role in mediating tumor formation. In prior studies, we generated a mouse model of schwannomas by performing tissue-specific knockout (KO) of the Carney complex gene Prkar1a, which encodes the type 1A regulatory subunit of protein kinase A. These tumors exhibited down-regulation of Nf2 protein and an increase in activated Rac1. To assess the requirement for Rac1 in schwannoma formation, we generated a double KO (DKO) of Prkar1a and Rac1 in Schwann cells and monitored tumor formation. Loss of Rac1 reduced tumor formation by reducing proliferation and enhancing apoptosis. Surprisingly, the reduction of tumor formation was accompanied by re-expression of the Nf2 protein. Furthermore, activated Rac1 was able to downregulate Nf2 in vitro in a Pak-dependent manner. These in vivo data indicate that activation of Rac1 is responsible for suppression of Nf2 protein production; deficiency of Nf2 in Schwann cells leads to loss of cellular growth control and tumor formation. Further, PKA activation through mutation in Prkar1a is sufficient to initiate Rac1 signaling, with subsequent reduction of Nf2 and schwannomagenesis. Although in vitro evidence has shown that loss of Nf2 activates Rac1, our data indicate that signaling between Nf2 and Rac1 occurs in a bidirectional fashion, and these interactions are modulated by PKA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Stylianos E. Antonarakis, Brian G. Skotko, … Roger H. Reeves

References

  1. Kissil JL, Blakeley JO, Ferner RE, Huson SM, Kalamarides M, Mautner VF et al. What’s new in neurofibromatosis? Proceedings from the 2009 NF Conference: new frontiers. Am J Med Genet A 2010; 152A: 269–283.

    Article  Google Scholar 

  2. Hulsebos TJ, Plomp AS, Wolterman RA, Robanus-Maandag EC, Baas F, Wesseling P . Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am J Hum Genet 2007; 80: 805–810.

    Article  CAS  Google Scholar 

  3. Kirschner LS, Sandrini F, Monbo J, Lin JP, Carney JA, Stratakis CA . Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the carney complex. Hum Mol Genet 2000; 9: 3037–3046.

    Article  CAS  Google Scholar 

  4. Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000; 26: 89–92.

    Article  CAS  Google Scholar 

  5. Kim HA, DeClue JE, Ratner N . cAMP-dependent protein kinase A is required for Schwann cell growth: interactions between the cAMP and neuregulin/tyrosine kinase pathways. J Neurosci Res 1997; 49: 236–247.

    Article  CAS  Google Scholar 

  6. Howe DG, McCarthy KD . Retroviral inhibition of cAMP-dependent protein kinase inhibits myelination but not Schwann cell mitosis stimulated by interaction with neurons. J Neurosci 2000; 20: 3513–3521.

    Article  CAS  Google Scholar 

  7. Izawa I, Tamaki N, Saya H . Phosphorylation of neurofibromatosis type 1 gene product (neurofibromin) by cAMP-dependent protein kinase. FEBS Lett 1996; 382: 53–59.

    Article  CAS  Google Scholar 

  8. Alfthan K, Heiska L, Gronholm M, Renkema GH, Carpen O . Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. J Biol Chem 2004; 279: 18559–18566.

    Article  CAS  Google Scholar 

  9. Laulajainen M, Muranen T, Carpen O, Gronholm M . Protein kinase A-mediated phosphorylation of the NF2 tumor suppressor protein merlin at serine 10 affects the actin cytoskeleton. Oncogene 2008; 27: 3233–3243.

    Article  CAS  Google Scholar 

  10. Kissil JL, Johnson KC, Eckman MS, Jacks T . Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 2002; 277: 10394–10399.

    Article  CAS  Google Scholar 

  11. Xiao GH, Beeser A, Chernoff J, Testa JR . p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 2002; 277: 883–886.

    Article  CAS  Google Scholar 

  12. Thaxton C, Lopera J, Bott M, Baldwin ME, Kalidas P, Fernandez-Valle C . Phosphorylation of the NF2 tumor suppressor in Schwann cells is mediated by Cdc42-Pak and requires paxillin binding. Mol Cell Neurosci 2007; 34: 231–242.

    Article  CAS  Google Scholar 

  13. Kim HA, Ratner N, Roberts TM, Stiles CD . Schwann cell proliferative responses to cAMP and Nf1 are mediated by cyclin D1. J Neurosci 2001; 21: 1110–1116.

    Article  CAS  Google Scholar 

  14. Tonks ID, Nurcombe V, Paterson C, Zournazi A, Prather C, Mould AW et al. Tyrosinase-Cre mice for tissue-specific gene ablation in neural crest and neuroepithelial-derived tissues. Genesis 2003; 37: 131–138.

    Article  CAS  Google Scholar 

  15. Jones GN, Tep C, Towns WH, Mihai G, Tonks ID, Kay GF et al. Tissue-specific ablation of Prkar1a causes schwannomas by suppressing neurofibromatosis protein production. Neoplasia 2008; 10: 1213–1221.

    Article  CAS  Google Scholar 

  16. Jones GN, Pringle DR, Yin Z, Carlton MM, Powell KA, Weinstein MB et al. Neural crest-specific loss of Prkar1a causes perinatal lethality resulting from defects in intramembranous ossification. Mol Endocrinol 2010; 24: 1559–1568.

    Article  CAS  Google Scholar 

  17. Okada T, You L, Giancotti FG . Shedding light on Merlin's wizardry. Trends Cell Biol 2007; 17: 222–229.

    Article  CAS  Google Scholar 

  18. Yin Z, Williams-Simons L, Rawahneh L, Asa S, Kirschner LS . Development of a pituitary-specific cre line targeted to the Pit-1 lineage. Genesis 2008; 46: 37–42.

    Article  CAS  Google Scholar 

  19. Stemmer-Rachamimov AO, Louis DN, Nielsen GP, Antonescu CR, Borowsky AD, Bronson RT et al. Comparative pathology of nerve sheath tumors in mouse models and humans. Cancer Res 2004; 64: 3718–3724.

    Article  CAS  Google Scholar 

  20. Kirschner LS, Kusewitt DF, Matyakhina L, Towns WH, Carney JA, Westphal H et al. A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res 2005; 65: 4506–4514.

    Article  CAS  Google Scholar 

  21. Sainz J, Huynh DP, Figueroa K, Ragge NK, Baser ME, Pulst SM . Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum Mol Genet 1994; 3: 885–891.

    Article  CAS  Google Scholar 

  22. Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 2001; 1: 63–72.

    Article  CAS  Google Scholar 

  23. Beeser A, Jaffer ZM, Hofmann C, Chernoff J . Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 2005; 280: 36609–36615.

    Article  CAS  Google Scholar 

  24. Bashour AM, Meng JJ, Ip W, MacCollin M, Ratner N . The neurofibromatosis type 2 gene product, merlin, reverses the F-actin cytoskeletal defects in primary human Schwannoma cells. Mol Cell Biol 2002; 22: 1150–1157.

    Article  CAS  Google Scholar 

  25. Pelton PD, Sherman LS, Rizvi TA, Marchionni MA, Wood P, Friedman RA et al. Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Oncogene 1998; 17: 2195–2209.

    Article  CAS  Google Scholar 

  26. Cotteret S, Chernoff J . The evolutionary history of effectors downstream of Cdc42 and Rac. Genome Biol 2002; 3: REVIEWS0002.

    Article  Google Scholar 

  27. Pankov R, Endo Y, Even-Ram S, Araki M, Clark K, Cukierman E et al. A Rac switch regulates random versus directionally persistent cell migration. J Cell Biol 2005; 170: 793–802.

    Article  CAS  Google Scholar 

  28. Flaiz C, Chernoff J, Ammoun S, Peterson JR, Hanemann CO . PAK kinase regulates Rac GTPase and is a potential target in human schwannomas. Exp Neurol 2009; 218: 137–144.

    Article  CAS  Google Scholar 

  29. Thurnherr T, Benninger Y, Wu X, Chrostek A, Krause SM, Nave KA et al. Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS. J Neurosci 2006; 26: 10110–10119.

    Article  CAS  Google Scholar 

  30. Feltri ML, Suter U, Relvas JB . The function of RhoGTPases in axon ensheathment and myelination. Glia 2008; 56: 1508–1517.

    Article  Google Scholar 

  31. Chan JR . Myelination: all about Rac 'n' roll. J Cell Biol 2007; 177: 953–955.

    Article  CAS  Google Scholar 

  32. Krause S, Stendel C, Senderek J, Relvas JB, Suter U . Small Rho GTPases are key regulators of peripheral nerve biology in health and disease. J Peripher Nerv Syst 2008; 13: 188–199.

    Article  CAS  Google Scholar 

  33. Benninger Y, Thurnherr T, Pereira JA, Krause S, Wu X, Chrostek-Grashoff A et al. Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development. J Cell Biol 2007; 177: 1051–1061.

    Article  CAS  Google Scholar 

  34. Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J . Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. Embo J 1996; 15: 510–519.

    Article  CAS  Google Scholar 

  35. O'Connor KL, Mercurio AM . Protein kinase A regulates Rac and is required for the growth factor-stimulated migration of carcinoma cells. J Biol Chem 2001; 276: 47895–47900.

    Article  CAS  Google Scholar 

  36. Okada T, Lopez-Lago M, Giancotti FG . Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 2005; 171: 361–371.

    Article  CAS  Google Scholar 

  37. Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T . Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell 2003; 12: 841–849.

    Article  CAS  Google Scholar 

  38. Kaempchen K, Mielke K, Utermark T, Langmesser S, Hanemann CO . Upregulation of the Rac1/JNK signaling pathway in primary human schwannoma cells. Hum Mol Genet 2003; 12: 1211–1221.

    Article  CAS  Google Scholar 

  39. Thaxton C, Lopera J, Bott M, Fernandez-Valle C . Neuregulin and laminin stimulate phosphorylation of the NF2 tumor suppressor in Schwann cells by distinct protein kinase A and p21-activated kinase-dependent pathways. Oncogene 2008; 27: 2705–2715.

    Article  CAS  Google Scholar 

  40. Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 2001; 15: 968–980.

    Article  CAS  Google Scholar 

  41. Xiao GH, Gallagher R, Shetler J, Skele K, Altomare DA, Pestell RG et al. The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 2005; 25: 2384–2394.

    Article  CAS  Google Scholar 

  42. Schulze KM, Hanemann CO, Muller HW, Hanenberg H . Transduction of wild-type merlin into human schwannoma cells decreases schwannoma cell growth and induces apoptosis. Hum Mol Genet 2002; 11: 69–76.

    Article  CAS  Google Scholar 

  43. Herrlich P, Morrison H, Sleeman J, Orian-Rousseau V, Konig H, Weg-Remers S et al. CD44 acts both as a growth- and invasiveness-promoting molecule and as a tumor-suppressing cofactor. Ann N Y Acad Sci 2000; 910: 106–118 ; discussion 18–20.

    Article  CAS  Google Scholar 

  44. Gautreau A, Manent J, Fievet B, Louvard D, Giovannini M, Arpin M . Mutant products of the NF2 tumor suppressor gene are degraded by the ubiquitin-proteasome pathway. J Biol Chem 2002; 277: 31279–31282.

    Article  CAS  Google Scholar 

  45. Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, Patel T . The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 2007; 282: 8256–8264.

    Article  CAS  Google Scholar 

  46. Zhang M, Siedow M, Saia G, Chakravarti A . Inhibition of p21-activated kinase 6 (PAK6) increases radiosensitivity of prostate cancer cells. Prostate 2010; 70: 807–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Glogauer M, Marchal CC, Zhu F, Worku A, Clausen BE, Foerster I et al. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J Immunol 2003; 170: 5652–5657.

    Article  CAS  Google Scholar 

  48. Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70–71.

    Article  CAS  Google Scholar 

  49. Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, Montagna C et al. Of mice and MEN1: Insulinomas in a conditional mouse knockout. Mol Cell Biol 2003; 23: 6075–6085.

    Article  CAS  Google Scholar 

  50. Brockes JP, Fields KL, Raff MC . Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 1979; 165: 105–118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the Department of Defense (DOD) Neurofibromatosis program. We thank Dr Matthew D Ringel and Dr Motoyasu Saji for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L S Kirschner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manchanda, P., Jones, G., Lee, A. et al. Rac1 is required for Prkar1a-mediated Nf2 suppression in Schwann cell tumors. Oncogene 32, 3491–3499 (2013). https://doi.org/10.1038/onc.2012.374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.374

Keywords

This article is cited by

Search

Quick links