Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NEDDylation controls the target specificity of E2F1 and apoptosis induction

Abstract

The transcription factor E2F1 has pivotal roles in both cell proliferation and cell death, and is an important molecular target in cancer. Under proliferative conditions E2F1 induces the expression of genes that promote cell cycle progression, such as E2F2, whereas under proapoptotic conditions E2F1 induces expression of genes such as p73 that lead to apoptosis. The mechanism by which the apoptotic function of E2F1 is activated remains unclear, however. We now show that members of the E2F family are covalently conjugated with the ubiquitin-like modifier NEDD8. Overexpression of SENP8, a NEDD8-specific cysteine protease, resulted in deNEDDylation of E2F1 and promoted its transactivation activity at the p73 gene but not at the E2F2 gene. Knockdown of SENP8, on the other hand, attenuated p73 expression and apoptosis induced by E2F1 or by DNA damage. SENP8 also promoted the interaction between E2F1 and its cofactor Microcephalin 1, which is required for p73 induction. These results suggest that NEDDylation is a molecular trigger that modifies the target specificity of E2F1, and could have important implications for E2F1 regulation of apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. van den Heuvel S, Dyson NJ . Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 2008; 9: 713–724.

    Article  CAS  Google Scholar 

  2. Iaquinta PJ, Lees JA . Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 2007; 19: 649–657.

    Article  CAS  Google Scholar 

  3. DeGregori J, Johnson DG . Distinct and overlapping roles for e2f family members in transcription, proliferation and apoptosis. Curr Mol Med 2006; 6: 739–748.

    CAS  PubMed  Google Scholar 

  4. Rowland BD, Bernards R . Re-evaluating cell-cycle regulation by E2Fs. Cell 2006; 127: 871–874.

    Article  CAS  Google Scholar 

  5. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 2001; 414: 457–462.

    Article  CAS  Google Scholar 

  6. Chong J-L, Wenzel PL, Saenz-Robles MT, Nair V, Ferrey A, Hagan JP et al. E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 2009; 462: 930–934.

    Article  CAS  Google Scholar 

  7. Chen D, Pacal M, Wenzel P, Knoepfler PS, Leone G, Bremner R . Division and apoptosis of E2f-deficient retinal progenitors. Nature 2009; 462: 925–929.

    Article  CAS  Google Scholar 

  8. Stiewe T, Putzer BM . Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 2000; 26: 464–469.

    Article  CAS  Google Scholar 

  9. Lissy NA, Davis PK, Irwin M, Kaelin WG, Dowdy SF . A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 2000; 407: 642–645.

    Article  CAS  Google Scholar 

  10. Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 2000; 407: 645–648.

    Article  CAS  Google Scholar 

  11. Hershko T, Ginsberg D . Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 2004; 279: 8627–8634.

    Article  CAS  Google Scholar 

  12. Biswas SC, Liu DX, Greene LA . Bim is a direct target of a neuronal E2F-dependent apoptotic pathway. J Neurosci 2005; 25: 8349–8358.

    Article  CAS  Google Scholar 

  13. Moroni MC, Hickman ES, Denchi EL, Caprara G, Colli E, Cecconi F et al. Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 2001; 3: 552–558.

    Article  CAS  Google Scholar 

  14. Nahle Z, Polakoff J, Davuluri RV, McCurrach ME, Jacobson MD, Narita M et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 2002; 4: 859–864.

    Article  CAS  Google Scholar 

  15. Hallstrom TC, Nevins JR . Jab1 is a specificity factor for E2F1-induced apoptosis. Genes Dev 2006; 20: 613–623.

    Article  CAS  Google Scholar 

  16. Hallstrom TC, Nevins JR . Specificity in the activation and control of transcription factor E2F-dependent apoptosis. Proc Nat Acad Sci USA 2003; 100: 10848–10853.

    Article  CAS  Google Scholar 

  17. Lazzerini Denchi E, Helin K . E2F1 is crucial for E2F-dependent apoptosis. EMBO Rep 2005; 6: 661–668.

    Article  CAS  Google Scholar 

  18. Martinez LA, Goluszko E, Chen H-Z, Leone G, Post S, Lozano G et al. E2F3 is a mediator of dna damage-induced apoptosis. Mol Cell Biol 2010; 30: 524–536.

    Article  CAS  Google Scholar 

  19. Lin WC, Lin FT, Nevins JR . Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 2001; 15: 1833–1844.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stevens C, Smith L, La Thangue NB . Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 2003; 5: 401–409.

    Article  CAS  Google Scholar 

  21. Urist M, Tanaka T, Poyurovsky MV, Prives C . p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 2004; 18: 3041–3054.

    Article  CAS  Google Scholar 

  22. Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 2003; 5: 552–558.

    Article  CAS  Google Scholar 

  23. Yang SZ, Lin FT, Lin WC . MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep 2008; 9: 907–915.

    Article  CAS  Google Scholar 

  24. Rabut G, Peter M . Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 2008; 9: 969–976.

    Article  CAS  Google Scholar 

  25. Watson IR, Li BK, Roche O, Blanch A, Ohh M, Irwin MS . Chemotherapy induces NEDP1-mediated destabilization of MDM2. Oncogene 2009; 29: 297–304.

    Article  Google Scholar 

  26. Hofmann F, Martelli F, Livingston DM, Wang Z . The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. Genes Dev 1996; 10: 2949–2959.

    Article  CAS  Google Scholar 

  27. Hateboer G, Kerkhoven RM, Shvarts A, Bernards R, Beijersbergen RL . Degradation of E2F by the ubiquitin-proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev 1996; 10: 2960–2970.

    Article  CAS  Google Scholar 

  28. Rizos H, Woodruff S, Kefford RF . p14 ARF interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners. Cell Cycle 2005; 4: 597–603.

    Article  CAS  Google Scholar 

  29. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009; 458: 732–736.

    Article  CAS  Google Scholar 

  30. Stickle NH, Chung J, Klco JM, Hill RP, Kaelin WG, Ohh M . pVHL modification by nedd8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol 2004; 24: 3251–3261.

    Article  CAS  Google Scholar 

  31. Xirodimas DP, Saville MK, Bourdon J-C, Hay RT, Lane DP . Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 2004; 118: 83.

    Article  CAS  Google Scholar 

  32. Watson IR, Blanch A, Lin DCC, Ohh M, Irwin MS . Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 2006; 281: 34096–34103.

    Article  CAS  Google Scholar 

  33. Gao F, Cheng J, Shi T, Yeh ETH . Neddylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NF[kappa]B-dependent transcription. Nat Cell Biol 2006; 8: 1171–1177.

    Article  CAS  Google Scholar 

  34. Xirodimas DP, Sundqvist A, Nakamura A, Shen L, Botting C, Hay RT . Ribosomal proteins are targets for the NEDD8 pathway. EMBO Rep 2008; 9: 280–286.

    Article  CAS  Google Scholar 

  35. Hughes TA, Brady HJM . E2F1 up-regulates the expression of the tumour suppressor axin2 both by activation of transcription and by mRNA stabilisation. Biochem Biophys Res Commun 2005; 329: 1267–1274.

    Article  CAS  Google Scholar 

  36. Morris EJ, Ji J-Y, Yang F, Di Stefano L, Herr A, Moon N-S et al. E2F1 represses [bgr]-catenin transcription and is antagonized by both pRB and CDK8. Nature 2008; 455: 552–556.

    Article  CAS  Google Scholar 

  37. Wu S, Murai S, Kataoka K, Miyagishi M . Yin Yang 1 induces transcriptional activity of p73 through cooperation with E2F1. Biochem Biophys Res Commun 2008; 365: 75–81.

    Article  CAS  Google Scholar 

  38. Ianari A, Gallo R, Palma M, Alesse E, Gulino A . Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage. J Biol Chem 2004; 279: 30830–30835.

    Article  CAS  Google Scholar 

  39. Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M . E2F family members are differentially regulated by reversible acetylation. J Biol Chem 2000; 275: 10887–10892.

    Article  CAS  Google Scholar 

  40. Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T . Regulation of E2F1 activity by acetylation. Embo J 2000; 19: 662–671.

    Article  CAS  Google Scholar 

  41. Vousden KH, Lu X . Live or let die: the cell's response to p53. Nat Rev Cancer 2002; 2: 594–604.

    Article  CAS  Google Scholar 

  42. Wang B, Liu K, Lin FT, Lin WC . A role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis. J Biol Chem 2004; 279: 54140–54152.

    Article  CAS  Google Scholar 

  43. Rogoff HA, Pickering MT, Frame FM, Debatis ME, Sanchez Y, Jones S et al. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol 2004; 24: 2968–2977.

    Article  CAS  Google Scholar 

  44. Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin WG, Livingston DM et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996; 85: 549–561.

    Article  CAS  Google Scholar 

  45. Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ . Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 1996; 85: 537–548.

    Article  CAS  Google Scholar 

  46. Polager S, Ginsberg D . E2F - at the crossroads of life and death. Tr Cell Biol 2008; 18: 528–535.

    Article  CAS  Google Scholar 

  47. Engels IH, Daguia C, Huynh T, Urbina H, Buddenkotte J, Schumacher A et al. A time-resolved fluorescence resonance energy transfer-based assay for DEN1 peptidase activity. Anal Biochem 2009; 390: 85–87.

    Article  CAS  Google Scholar 

  48. Morita S, Kojima T, Kitamura T . Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 2000; 7: 1063–1066.

    Article  CAS  Google Scholar 

  49. Treier M, Staszewski LM, Bohmann D . Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 1994; 78: 787–798.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Elizabeth Nigh and colleagues for critical reading of the manuscript. This work was supported by Grants-in-Aid for Scientific Research (A) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and by CREST from the Japan Science and Technology Agency. This work was also supported in part by the Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Gotoh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, I., Higuchi, M. & Gotoh, Y. NEDDylation controls the target specificity of E2F1 and apoptosis induction. Oncogene 32, 3954–3964 (2013). https://doi.org/10.1038/onc.2012.428

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.428

Keywords

This article is cited by

Search

Quick links