Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

A tumor suppressor role for srGAP3 in mammary epithelial cells

Abstract

srGAP3, a member of the Slit-Robo sub-family of Rho GTPase-activating proteins (Rho GAPs), controls actin and microtubule dynamics through negative regulation of Rac. Here, we describe a potential role for srGAP3 as a tumor suppressor in mammary epithelial cells. We show that RNAi-mediated depletion of srGAP3 promotes Rac dependent, anchorage-independent growth of partially transformed human mammary epithelial cells (HMECs). Furthermore, srGAP3 expression is absent, or significantly reduced in 7/10 breast cancer cell lines compared with normal HMECs. Re-expression of srGAP3 in a subset of these cell lines inhibits both anchorage-independent growth and cell invasion in a GAP-dependent manner, and this is accompanied by an increase in phosphorylation of the ezrin/radixin/moesin (ERM) family proteins and myosin light chain 2 (MLC2). Inhibition of the Rho regulated kinase, ROCK, reduces ERM and MLC2 phosphorylation and restores invasion. We conclude that srGAP3 has tumor suppressor-like activity in HMECs, likely through its activity as a negative regulator of Rac1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ellenbroek SI, Collard JG . Rho GTPases: functions and association with cancer. Clin Exp Metastasis 2007; 24: 657–672.

    Article  CAS  Google Scholar 

  2. Vega FM, Ridley AJ . Rho GTPases in cancer cell biology. FEBS Lett 2008; 582: 2093–2101.

    Article  CAS  Google Scholar 

  3. Jaffe AB, Hall A . Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21: 247–269.

    Article  CAS  Google Scholar 

  4. Lazer G, Katzav S . Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal 2011; 23: 969–979.

    Article  CAS  Google Scholar 

  5. Xue W, Krasnitz A, Lucito R, Sordella R, Vanaelst L, Cordon-Cardo C et al. DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes Dev 2008; 22: 1439–1444.

    Article  CAS  Google Scholar 

  6. Yang C, Kazanietz MG . Chimaerins: GAPs that bridge diacylglycerol signalling and the small G-protein Rac. Biochem J 2007; 403: 1–12.

    Article  CAS  Google Scholar 

  7. Aspenstrom P . Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. Int Rev Cell Mol Biol 2009; 272: 1–31.

    PubMed  Google Scholar 

  8. Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the slit-robo pathway. Cell 2001; 107: 209–221.

    Article  CAS  Google Scholar 

  9. Guerrier S, Coutinho-Budd J, Sassa T, Gresset A, Jordan NV, Chen K et al. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 2009; 138: 990–1004.

    Article  CAS  Google Scholar 

  10. Madura T, Yamashita T, Kubo T, Tsuji L, Hosokawa K, Tohyama M . Changes in mRNA of Slit-Robo GTPase-activating protein 2 following facial nerve transection. Brain Res Mol Brain Res 2004; 123: 76–80.

    Article  CAS  Google Scholar 

  11. Endris V, Wogatzky B, Leimer U, Bartsch D, Zatyka M, Latif F et al. The novel Rho-GTPase activating gene MEGAP/srGAP3 has a putative role in severe mental retardation. Proc Natl Acad Sci USA 2002; 99: 11754–11759.

    Article  CAS  Google Scholar 

  12. Endris V, Haussmann L, Buss E, Bacon C, Bartsch D, Rappold G . SrGAP3 interacts with lamellipodin at the cell membrane and regulates Rac-dependent cellular protrusions. J Cell Sci 2011; 124 (Pt 23): 3941–3955.

    Article  CAS  Google Scholar 

  13. Yang Y, Marcello M, Endris V, Saffrich R, Fischer R, Trendelenburg MF et al. MEGAP impedes cell migration via regulating actin and microtubule dynamics and focal complex formation. Exp Cell Res 2006; 312: 2379–2393.

    Article  CAS  Google Scholar 

  14. Carlson BR, Lloyd KE, Kruszewski A, Kim IH, Rodriguiz RM, Heindel C et al. WRP/srGAP3 facilitates the initiation of spine development by an inverse F-BAR domain, and its loss impairs long-term memory. J Neurosci 2011; 31: 2447–2460.

    Article  CAS  Google Scholar 

  15. Soderling SH, Binns KL, Wayman GA, Davee SM, Ong SH, Pawson T et al. The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nat Cell Biol 2002; 4: 970–975.

    Article  CAS  Google Scholar 

  16. Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K et al. A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci 2007; 27: 355–365.

    Article  CAS  Google Scholar 

  17. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 2005; 121: 837–848.

    Article  CAS  Google Scholar 

  18. Zhao JJ, Gjoerup OV, Subramanian RR, Cheng Y, Chen W, Roberts TM et al. Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 2003; 3: 483–495.

    Article  CAS  Google Scholar 

  19. Chen K, Mi YJ, Ma Y, Fu HL, Jin WL . The mental retardation associated protein, srGAP3 negatively regulates VPA-induced neuronal differentiation of Neuro2A cells. Cell Mol Neurobiol 2011; 31: 675–686.

    Article  CAS  Google Scholar 

  20. Radvanyi L, Singh-Sandhu D, Gallichan S, Lovitt C, Pedyczak A, Mallo G et al. The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc Natl Acad Sci USA 2005; 102: 11005–11010.

    Article  CAS  Google Scholar 

  21. Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 2004; 15: 2523–2536.

    Article  CAS  Google Scholar 

  22. Shuib S, McMullan D, Rattenberry E, Barber RM, Rahman F, Zatyka M et al. Microarray based analysis of 3p25-p26 deletions (3p- syndrome). Am J Med Genet A 2009; 149A: 2099–2105.

    Article  CAS  Google Scholar 

  23. Kristensen LS, Nielsen HM, Hansen LL . Epigenetics and cancer treatment. Eur J Pharmacol 2009; 625: 131–142.

    Article  Google Scholar 

  24. Tang YA, Wen WL, Chang JW, Wei TT, Tan YH, Salunke S et al. A novel histone deacetylase inhibitor exhibits antitumor activity via apoptosis induction, F-actin disruption and gene acetylation in lung cancer. PLoS One 2010; 5: e12417.

    Article  Google Scholar 

  25. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 2007; 1: 84–96.

    Article  CAS  Google Scholar 

  26. Han J, Chang H, Giricz O, Lee GY, Baehner FL, Gray JW et al. Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture. PLoS Comput Biol 2010; 6: e1000684.

    Article  Google Scholar 

  27. Guo Y, Pakneshan P, Gladu J, Slack A, Szyf M, Rabbani SA . Regulation of DNA methylation in human breast cancer. Effect on the urokinase-type plasminogen activator gene production and tumor invasion. J Biol Chem 2002; 277: 41571–41579.

    Article  CAS  Google Scholar 

  28. Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A et al. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 2001; 61: 5168–5178.

    CAS  Google Scholar 

  29. Ikebe M, Hartshorne DJ . Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem 1985; 260: 10027–10031.

    CAS  Google Scholar 

  30. Lorentzen A, Bamber J, Sadok A, Elson-Schwab I, Marshall CJ . An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells. J Cell Sci 2011; 124 (Pt 8): 1256–1267.

    Article  CAS  Google Scholar 

  31. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 2008; 135: 510–523.

    Article  CAS  Google Scholar 

  32. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273: 245–248.

    Article  CAS  Google Scholar 

  33. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 1998; 140: 647–657.

    Article  CAS  Google Scholar 

  34. Sosa MS, Lopez-Haber C, Yang C, Wang H, Lemmon MA, Busillo JM et al. Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. Mol Cell 2010; 40: 877–892.

    Article  CAS  Google Scholar 

  35. Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG . Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 1999; 147: 1009–1022.

    Article  CAS  Google Scholar 

  36. Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG . Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 2000; 149: 775–782.

    Article  CAS  Google Scholar 

  37. Counter CM, Meyerson M, Eaton EN, Ellisen LW, Caddle SD, Haber DA et al. Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 1998; 16: 1217–1222.

    Article  CAS  Google Scholar 

  38. Soderling SH, Langeberg LK, Soderling JA, Davee SM, Simerly R, Raber J et al. Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc Natl Acad Sci USA 2003; 100: 1723–1728.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank William C Hahn, Dana-Farber Cancer Institute, for providing the cell line HMEC/hTERT/LT/c-myc and John D Scott, University of Washington, for the gift of pCDNA3.1-WRP-V5His and pCDNA3.1-WRPΔGAP-V5His plasmids. We also thank Memorial Sloan-Kettering Cancer Center Molecular Cytogenetics Core facility for performing the FISH assays, the Bioinformatic Core facility for the analysis of the microarray data and Overholtzer laboratories for critical reading of the manuscript and helpful discussions. This work was supported by Fundacion Caja Madrid, Spain (AL) and by an MSKCC Geoffrey Beene Cancer Research Center Grant (AH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Hall.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahoz, A., Hall, A. A tumor suppressor role for srGAP3 in mammary epithelial cells. Oncogene 32, 4854–4860 (2013). https://doi.org/10.1038/onc.2012.489

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.489

Keywords

This article is cited by

Search

Quick links