Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cells of origin for cancer: an updated view from prostate cancer

Abstract

The cells of origin for cancer are the cells within tissues that serve as the target for transformation. Understanding the nature of these cells will benefit disease prevention, diagnosis and prognosis. During the past decade, much progress has been made in understanding the cellular origin for prostate cancer. This review aims to summarize the previous findings, describe the most recent results and discuss some controversies and unresolved issues in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Visvader JE . Cells of origin in cancer. Nature 2011; 469: 314–322.

    Article  CAS  PubMed  Google Scholar 

  2. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.

    Article  CAS  PubMed  Google Scholar 

  3. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  PubMed  Google Scholar 

  4. Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, Aldape KD et al. Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res 2007; 67: 890–900.

    Article  CAS  PubMed  Google Scholar 

  5. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 2010; 468: 1095–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 2007; 12: 160–170.

    Article  CAS  PubMed  Google Scholar 

  7. Shizuru JA, Negrin RS, Weissman IL . Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 2005; 56: 509–538.

    Article  CAS  PubMed  Google Scholar 

  8. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.

    CAS  PubMed  Google Scholar 

  9. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  10. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barabe F, Kennedy JA, Hope KJ, Dick JE . Modeling the initiation and progression of human acute leukemia in mice. Science 2007; 316: 600–604.

    Article  CAS  PubMed  Google Scholar 

  12. Welm AL, Kim S, Welm BE, MET Bishop JM . and MYC cooperate in mammary tumorigenesis. Proc Natl Acad Sci USA 2005; 102: 4324–4329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xin L, Lawson DA, Witte ON . The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 2005; 102: 6942–6947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuhbandner S, Brummer S, Metzger D, Chambon P, Hofmann F, Feil R . Temporally controlled somatic mutagenesis in smooth muscle. Genesis 2000; 28: 15–22.

    Article  CAS  PubMed  Google Scholar 

  15. von Werder A, Seidler B, Schmid RM, Schneider G, Saur D . Production of avian retroviruses and tissue-specific somatic retroviral gene transfer in vivo using the RCAS/TVA system. Nat Protoc 2012; 7: 1167–1183.

    Article  PubMed  Google Scholar 

  16. Lapouge G, Youssef KK, Vokaer B, Achouri Y, Michaux C, Sotiropoulou PA et al. Identifying the cellular origin of squamous skin tumors. Proc Natl Acad Sci USA. 2011; 108: 7431–7436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Passegue E, Jamieson CH, Ailles LE, Weissman IL . Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA. 2003; 100 (Suppl 1): 11842–11849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 2008; 14: 135–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY, Berns A . Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 2011; 19: 754–764.

    Article  CAS  PubMed  Google Scholar 

  20. Du Z, Li Y . RCAS-TVA in the mammary gland: an in vivo oncogene screen and a high fidelity model for breast transformation? Cell Cycle 2007; 6: 823–826.

    Article  CAS  PubMed  Google Scholar 

  21. Baker CM, Verstuyf A, Jensen KB, Watt FM . Differential sensitivity of epidermal cell subpopulations to beta-catenin-induced ectopic hair follicle formation. Dev Biol 2010; 343: 40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  PubMed  Google Scholar 

  23. Abate-Shen C, Shen MM . Molecular genetics of prostate cancer. Genes Dev 2000; 14: 2410–2434.

    Article  CAS  PubMed  Google Scholar 

  24. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P et al. Roles for Nkx3.1 in prostate development and cancer. Genes Dev 1999; 13: 966–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bethel CR, Faith D, Li X, Guan B, Hicks JL, Lan F et al. Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with gleason score and chromosome 8p deletion. Cancer Res 2006; 66: 10683–10690.

    Article  CAS  PubMed  Google Scholar 

  26. Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L et al. P63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 2000; 157: 1769–1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. El-Alfy M, Pelletier G, Hermo LS, Labrie F . Unique features of the basal cells of human prostate epithelium. Microsc Res Technol 2000; 51: 436–446.

    Article  CAS  Google Scholar 

  28. De Marzo AM, Meeker AK, Epstein JI, Coffey DS . Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 1998; 153: 911–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Isaacs JT . Control of cell proliferation and cell death in the normal and neoplastic prostate: a stem cell model. In: Rodgers CH, Coffey DS, Cunha G, Grayhack JT, Hinman F Jr, Horton R, (eds). Benigh Prostatic Hyperplasia NIH Publication No. 87-2881 Washington, DC, US Department of Health and Human Services, 1987, pp 85–94.

    Google Scholar 

  30. Vashchenko N, Abrahamsson PA . Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol 2005; 47: 147–155.

    Article  CAS  PubMed  Google Scholar 

  31. Litvinov IV, Vander Griend DJ, Xu Y, Antony L, Dalrymple SL, Isaacs JT . Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells. Cancer Res 2006; 66: 8598–8607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hudson DL, Guy AT, Fry P, O’Hare MJ, Watt FM, Masters JR . Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 2001; 49: 271–278.

    Article  CAS  PubMed  Google Scholar 

  33. Peehl DM . Primary cell cultures as models of prostate cancer development. Endocr Relat Cancer 2005; 12: 19–47.

    Article  CAS  PubMed  Google Scholar 

  34. van Leenders G, Dijkman H, Hulsbergen-van de Kaa C, Ruiter D, Schalken J . Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest 2000; 80: 1251–1258.

    Article  CAS  PubMed  Google Scholar 

  35. Humphrey PA . Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J Clin Pathol 2007; 60: 35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Verhagen AP, Ramaekers FC, Aalders TW, Schaafsma HE, Debruyne FM, Schalken JA . Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res 1992; 52: 6182–6187.

    CAS  PubMed  Google Scholar 

  38. van Leenders GJ, Gage WR, Hicks JL, van Balken B, Aalders TW, Schalken JA et al. Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am J Pathol 2003; 162: 1529–1537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tran CP, Lin C, Yamashiro J, Reiter RE . Prostate stem cell antigen is a marker of late intermediate prostate epithelial cells. Mol Cancer Res 2002; 1: 113–121.

    CAS  PubMed  Google Scholar 

  40. Choi N, Zhang B, Zhang L, Ittmann M, Xin L . Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 2012; 21: 253–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H . Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA 2006; 103: 1480–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xin L, Ide H, Kim Y, Dubey P, Witte ON . In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci USA 2003; 100 (Suppl 1): 11896–11903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chung LW, Cunha GR . Stromal–epithelial interactions: II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate 1983; 4: 503–511.

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON . Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci USA 2008; 105: 20882–20887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON . Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 2007; 104: 181–186.

    Article  CAS  PubMed  Google Scholar 

  46. Leong KG, Wang BE, Johnson L, Gao WQ . Generation of a prostate from a single adult stem cell. Nature 2008; 456: 804–808.

    Article  CAS  PubMed  Google Scholar 

  47. Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K et al. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci USA 2005; 102: 7180–7185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON . Identification of a cell of origin for human prostate cancer. Science 2010; 329: 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON . Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA 2010; 107: 2610–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 2009; 461: 495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taylor RA, Cowin PA, Cunha GR, Pera M, Trounson AO, Pedersen J et al. Formation of human prostate tissue from embryonic stem cells. Nat Methods 2006; 3: 179–181.

    Article  CAS  PubMed  Google Scholar 

  52. Neubauer BL, Chung LW, McCormick KA, Taguchi O, Thompson TC, Cunha GR . Epithelial–mesenchymal interactions in prostatic development. II. Biochemical observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J Cell Biol 1983; 96: 1671–1676.

    Article  CAS  PubMed  Google Scholar 

  53. Taylor RA, Wang H, Wilkinson SE, Richards MG, Britt KL, Vaillant F et al. Lineage enforcement by inductive mesenchyme on adult epithelial stem cells across developmental germ layers. Stem Cells 2009; 27: 3032–3042.

    CAS  PubMed  Google Scholar 

  54. Magee JA, Abdulkadir SA, Milbrandt J . Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 2003; 3: 273–283.

    Article  CAS  PubMed  Google Scholar 

  55. Liu J, Pascal LE, Isharwal S, Metzger D, Ramos Garcia R, Pilch J et al. Regenerated luminal epithelial cells are derived from preexisting luminal epithelial cells in adult mouse prostate. Mol Endocrinol 2011; 25: 1849–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479: 189–193.

    Article  CAS  PubMed  Google Scholar 

  57. de Visser KE, Ciampricotti M, Michalak E, Wei-Min Tan D, Speksnijder EN, Hau CS et al. Developmental stage-specific contribution of LGR5+ cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol 2012; 228: 300–309.

    Article  CAS  PubMed  Google Scholar 

  58. van Amerongen R, Bowman AN, Nusse R . Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell stem cell 2012; 11: 387–400.

    Article  CAS  PubMed  Google Scholar 

  59. Doupe DP, Alcolea MP, Roshan A, Zhang G, Klein AM, Simons BD et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 2012; 337: 1091–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bonkhoff H, Stein U, Remberger K . The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 1994; 24: 114–118.

    Article  CAS  PubMed  Google Scholar 

  61. Tuxhorn JA, Ayala GE, Rowley DR . Reactive stroma in prostate cancer progression. J Urol 2001; 166: 2472–2483.

    Article  CAS  PubMed  Google Scholar 

  62. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.

    Article  CAS  PubMed  Google Scholar 

  63. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 2009; 41: 524–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 2009; 41: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, Witte ON . ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci USA 2009; 106: 12465–12470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 2008; 105: 2105–2110.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang L, Zhao W, Valdez JM, Creighton CJ, Xin L . Low-density Taqman miRNA array reveals miRNAs differentially expressed in prostatic stem cells and luminal cells. Prostate 2009; 70: 297–304.

    Google Scholar 

  68. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  69. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H . Seeding and propagation of untransformed mouse mammary cells in the lung. Science 2008; 321: 1841–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang Y, Hayward S, Cao M, Thayer K, Cunha G . Cell differentiation lineage in the prostate. Differentiation 2001; 68: 270–279.

    Article  CAS  PubMed  Google Scholar 

  73. Ousset M, Van Keymeulen A, Bouvencourt G, Sharma N, Achouri Y, Simons BD et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 2012; 14: 1131–1138.

    Article  CAS  PubMed  Google Scholar 

  74. Pascal LE, Oudes AJ, Petersen TW, Goo YA, Walashek LS, True LD et al. Molecular and cellular characterization of ABCG2 in the prostate. BMC Urol 2007; 7: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Moeller H, Goecke B, Herter F . Seasonal and diurnal changes of prostatic androgen receptor and circulating testosterone in young mature rats. Res Exp Med (Berl) 1988; 188: 451–462.

    Article  CAS  Google Scholar 

  76. Liu AY, True LD . Characterization of prostate cell types by CD cell surface molecules. Am J Pathol 2002; 160: 37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  78. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL . Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 2004; 113: 913–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Goldstein AS, Zong Y, Witte ON . A two-step toward personalized therapies for prostate cancer. Sci Transl Med 2011; 3: 72–77.

    Article  Google Scholar 

  82. Valdez JM, Zhang L, Su Q, Dakhova O, Zhang Y, Shahi P et al. Notch and TGFβ form a reciprocal positive regulatory loop that suppresses murine prostate basal stem/progenitor cell activity. Cell Stem Cell 2012; 11: 676–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I apologize to those authors whose work could not be cited because of space limitation, and thank Drs Michael Ittmann and Jeffrey Rosen for critical reading of the manuscript. This work is supported by NIH R00CA125937 (LX), R01DK092202 (LX) and U01CA141497 (MMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Xin.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, L. Cells of origin for cancer: an updated view from prostate cancer. Oncogene 32, 3655–3663 (2013). https://doi.org/10.1038/onc.2012.541

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.541

Keywords

This article is cited by

Search

Quick links