Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche

Abstract

The sub-population of tumor cells termed ‘cancer stem cells’ (CSCs) possess the capability to generate tumors, undergo epithelial–mesenchymal transition (EMT) and are implicated in metastasis, making treatments to specifically target CSCs an attractive therapeutic strategy. Tumor hypoxia plays a key role in regulating EMT and cancer stem cell function. Carbonic anhydrase IX (CAIX) is a hypoxia-inducible protein that regulates cellular pH to promote cancer cell survival and invasion in hypoxic microenvironments and is a biomarker of poor prognosis for breast cancer metastasis and survival. Here, we demonstrate that inhibition of CAIX expression or activity with novel small-molecule inhibitors in breast cancer cell lines, or in primary metastatic breast cancer cells, results in the inhibition of breast CSC expansion in hypoxia. We identify the mTORC1 axis as a critical pathway downstream of CAIX in the regulation of cancer stem cell function. CAIX is also required for expression of EMT markers and regulators, as well as drivers of ‘stemness’, such as Notch1 and Jagged1 in isolated CSCs. In addition, treatment of mice bearing orthotopic breast tumors with CAIX-specific small-molecule inhibitors results in significant depletion of CSCs within these tumors. Furthermore, combination treatment with paclitaxel results in enhanced tumor growth delay and eradication of lung metastases. These data demonstrate that CAIX is a critical mediator of the expansion of breast CSCs in hypoxic niches by sustaining the mesenchymal and ‘stemness’ phenotypes of these cells, making CAIX an important therapeutic target for selectively depleting breast CSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CA:

carbonic anhydrase

CSC:

cancer stem cell

EMT:

epithelial-to-mesenchymal transition

EpCAM:

epithelial cell adhesion molecule

FACS:

fluorescence-activated cell sorting

IHC:

immunohistochemistry

mTOR:

mammalian target of rapamycin

NS:

nonsilencing

PE:

pleural effusion

SLDA:

sphere limiting dilution assay

TS:

tumorsphere

References

  1. Dean M, Fojo T, Bates S . Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5: 275–284.

    Article  CAS  PubMed  Google Scholar 

  2. O’Brien CA, Kreso A, Dick JE . Cancer stem cells in solid tumors: an overview. Semin Radiat Oncol 2009; 19: 71–77.

    Article  PubMed  Google Scholar 

  3. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells cancer and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L . Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 2008; 10: R10.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T . Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005; 5: 744–749.

    Article  CAS  PubMed  Google Scholar 

  7. Creighton CJ, Chang JC, Rosen JM . Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15: 253–260.

    Article  PubMed  Google Scholar 

  8. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 2008; 68: 937–945.

    Article  CAS  PubMed  Google Scholar 

  10. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65: 5506–5511.

    Article  CAS  PubMed  Google Scholar 

  11. Rota LM, Lazzarino DA, Ziegler AN, Leroith D, Wood TL . Determining mammosphere-forming potential: application of the limiting dilution analysis. J Mammary Gland Biol Neoplasia 2012; 17: 119–123.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H . Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 2008; 26: 1818–1830.

    Article  PubMed  Google Scholar 

  13. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A . Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 2010; 7: 150–161.

    Article  CAS  PubMed  Google Scholar 

  14. Xing F, Okuda H, Watabe M, Kobayashi A, Pai SK, Liu W et al. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 2011; 30: 4075–4086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Supuran CT . Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008; 7: 168–181.

    Article  CAS  PubMed  Google Scholar 

  16. Svastova E, Zilka N, Zat'ovicova M, Gibadulinova A, Ciampor F, Pastorek J et al. Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with beta-catenin. Exp Cell Res 2003; 290: 332–345.

    Article  CAS  PubMed  Google Scholar 

  17. Swietach P, Hulikova A, Vaughan-Jones RD, Harris AL . New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene 2010; 29: 6509–6521.

    Article  CAS  PubMed  Google Scholar 

  18. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 2011; 71: 3364–3376.

    Article  CAS  PubMed  Google Scholar 

  19. Horree N, van Diest PJ, Sie-Go DM, Heintz AP . The invasive front in endometrial carcinoma: higher proliferation and associated derailment of cell cycle regulators. Hum Pathol 2007; 38: 1232–1238.

    Article  CAS  PubMed  Google Scholar 

  20. Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R, Badve S et al. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 2010; 10: 411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 2008; 10: R52.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reuben JM, Lee BN, Gao H, Cohen EN, Mego M, Giordano A et al. Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44CD24lo cancer stem cell phenotype. Eur J Cancer 2011; 47: 1527–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E . Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 2007; 67: 8671–8681.

    Article  CAS  PubMed  Google Scholar 

  24. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  25. Lefkovits I, Waldmann H . Limiting Dilution Analysis of Cells of the Immune System 2nd edn. Oxford University Press, Oxford, New York, 1999, xvi 285: pp.

    Google Scholar 

  26. Balgi AD, Diering GH, Donohue E, Lam KK, Fonseca BD, Zimmerman C et al. Regulation of mTORC1 signaling by pH. PLoS One 2011; 6: e21549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Russell RC, Fang C, Guan KL . An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 2011; 138: 3343–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011; 71: 3246–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shorning BY, Griffiths D, Clarke AR . Lkb1 and Pten synergise to suppress mTOR-mediated tumorigenesis and epithelial-mesenchymal transition in the mouse bladder. PLoS One 2011; 6: e16209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110: 163–175.

    Article  CAS  PubMed  Google Scholar 

  31. Vignot S, Faivre S, Aguirre D, Raymond E . mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 2005; 16: 525–537.

    Article  CAS  PubMed  Google Scholar 

  32. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 2002; 22: 7004–7014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Knaup KX, Jozefowski K, Schmidt R, Bernhardt WM, Weidemann A, Juergensen JS et al. Mutual regulation of hypoxia-inducible factor and mammalian target of rapamycin as a function of oxygen availability. Mol Cancer Res 2009; 7: 88–98.

    Article  CAS  PubMed  Google Scholar 

  34. Hartwell KA, Muir B, Reinhardt F, Carpenter AE, Sgroi DC, Weinberg RA . The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci USA 2006; 103: 18969–18974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B et al. Targeting Notch to target cancer stem cells. Clin Cancer Res 2010; 16: 3141–3152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, Scozzafava A et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem 2011; 54: 1896–1902.

    Article  CAS  PubMed  Google Scholar 

  37. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS . Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15: 232–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harma V, Virtanen J, Makela R, Happonen A, Mpindi JP, Knuuttila M et al. A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One 2010; 5: e10431.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Touisni N, Maresca A, McDonald PC, Lou Y, Scozzafava A, Dedhar S et al. Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J Med Chem 2011; 54: 8271–8277.

    Article  CAS  PubMed  Google Scholar 

  40. Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, Tsai ST et al. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 2009; 4: e8377.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Croker AK, Allan AL . Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDH(hi)CD44 (+) human breast cancer cells. Breast Cancer Res Treat 2011; 133: 75–87.

    Article  PubMed  Google Scholar 

  43. Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 2011; 29: 32–45.

    Article  CAS  PubMed  Google Scholar 

  44. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138: 645–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinez-Moragon E, Aparicio J, Sanchis J, Menendez R, Cruz Rogado M, Sanchis F . Malignant pleural effusion: prognostic factors for survival and response to chemical pleurodesis in a series of 120 cases. Respiration 1998; 65: 108–113.

    Article  CAS  PubMed  Google Scholar 

  46. Liao ND, Shieh JM, Lee WY . Diagnostic value of metabolic phenotypes in malignant pleural effusions: expression of GLUT1 and CAIX by immunocytochemistry. Cancer Cytopathol 2011; 119: 346–353.

    Article  CAS  PubMed  Google Scholar 

  47. Chaudary N, Hill RP . Hypoxia and metastasis. Clin Cancer Res 2007; 13: 1947–1949.

    Article  CAS  PubMed  Google Scholar 

  48. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117: 3988–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 2010; 16: 45–55.

    Article  CAS  PubMed  Google Scholar 

  50. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H . Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 2005; 11: 1154–1159.

    CAS  PubMed  Google Scholar 

  51. Smith KM, Datti A, Fujitani M, Grinshtein N, Zhang L, Morozova O et al. Selective targeting of neuroblastoma tumour-initiating cells by compounds identified in stem cell-based small molecule screens. EMBO Mol Med 2010; 2: 371–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haase VH . Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int 2009; 76: 492–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barnes EA, Kenerson HL, Jiang X, Yeung RS . Tuberin regulates E-cadherin localization: implications in epithelial-mesenchymal transition. Am J Pathol 2010; 177: 1765–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Joo KM, Jin J, Kim E, Ho Kim K, Kim Y, Gu Kang B et al. MET signaling regulates glioblastoma stem cells. Cancer Res 2012; 72: 3828–3838.

    Article  CAS  PubMed  Google Scholar 

  55. Wang XY, Penalva LO, Yuan H, Linnoila RI, Lu J, Okano H et al. Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol Cancer 2010; 9: 221.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 2010; 102: 1637–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oloumi A, MacPhail SH, Johnston PJ, Banath JP, Olive PL . Changes in subcellular distribution of topoisomerase IIalpha correlate with etoposide resistance in multicell spheroids and xenograft tumors. Cancer Res 2000; 60: 5747–5753.

    CAS  PubMed  Google Scholar 

  58. Turner FE, Broad S, Khanim FL, Jeanes A, Talma S, Hughes S et al. Slug regulates integrin expression and cell proliferation in human epidermal keratinocytes. J Biol Chem 2006; 281: 21321–21331.

    Article  CAS  PubMed  Google Scholar 

  59. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  60. Lee GY, Kenny PA, Lee EH, Bissell MJ . Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 2007; 4: 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Canadian Institutes of Health Research (CIHR) to SD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Dedhar.

Ethics declarations

Competing interests

SD and CTS are founding members of MetaSignal Therapeutics Inc. PCM is a consultant for MetaSignal Therapeutics Inc. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lock, F., McDonald, P., Lou, Y. et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene 32, 5210–5219 (2013). https://doi.org/10.1038/onc.2012.550

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.550

Keywords

This article is cited by

Search

Quick links