Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ErbB2, FoxM1 and 14-3-3ζ prime breast cancer cells for invasion in response to ionizing radiation

Abstract

ErbB2 is frequently highly expressed in premalignant breast cancers, including ductal carcinoma in situ (DCIS); however, little is known about the signals or pathways it contributes to progression into the invasive/malignant state. Radiotherapy is often used to treat early premalignant lesions regardless of ErbB2 status. Here, we show that clinically relevant doses of ionizing radiation (IR)-induce cellular invasion of ErbB2-expressing breast cancer cells, as well as MCF10A cells overexpressing ErbB2. ErbB2-negative breast cancer cells, such as MCF7 and T47D, do not invade following treatment with IR nor do MCF10A cells overexpressing epidermal growth factor receptor. ErbB2 becomes phosphorylated at tyrosine 877 in a dose- and time- dependent manner following exposure to X-rays, and activates downstream signaling cascades including PI3K/Akt. Inhibition of these pathways, as well as inhibition of reactive oxygen species (ROS) with antioxidants, prevents IR-induced invasion. Activation of ErbB2-dependent signaling results in upregulation of the forkhead family transcription factor, FoxM1, and its transcriptional targets, including matrix metalloproteinase 2 (MMP2). Inhibition of FoxM1 by RNA interference prevented induction of invasion by IR, and overexpression of FoxM1 in MCF10A cells was sufficient to promote IR-induced invasion. Moreover, we found that 14-3-3ζ is also upregulated by IR in cancer cells in a ROS-dependent manner, is required for IR-induced invasion in ErbB2-positive breast cancer cells and together with FoxM1 is sufficient for invasion in ErbB2-negative breast cancer cells. Thus, our data show that IR-mediated activation of ErbB2 and induction of 14-3-3ζ collaborate to regulate FoxM1 and promote invasion of breast cancer cells and furthermore, may serve as therapeutic targets to enhance radiosensitivity of breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ . Tyrosine kinase signaling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res 2000; 2: (Journal Article) 203–210.

    Article  CAS  Google Scholar 

  2. Badache A, Goncalves A . The ErbB2 signaling network as a target for breast cancer therapy. J Mammary Gland Biol Neoplasia 2006; 11: 13–25.

    Article  Google Scholar 

  3. Yarden Y, Sliwkowski MX . Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2001; 2: 127–137.

    Article  CAS  Google Scholar 

  4. DiGiovanna MP, Chu P, Davison TL, Howe CL, Carter D, Claus EB et al. Active signaling by HER-2/neu in a subpopulation of HER-2/neu-overexpressing ductal carcinoma in situ. Cancer Res 2002; 62: 6667–6673.

    CAS  PubMed  Google Scholar 

  5. Garrett TPJ, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 2003; 11: 495–505.

    Article  CAS  Google Scholar 

  6. Olayioye MF, Neve RM, Lane HA, Hynes NE . The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19: 3159–3167.

    Article  CAS  Google Scholar 

  7. Schmidt-Ullrich R, Valerie K, Fogleman PB, Walters J . Radiation-induced autophosphorylation of epidermal growth factor receptor in human malignant mammary and squamous epithelial cells. Radiat Res 1996; 145: 81–85.

    Article  CAS  Google Scholar 

  8. Mikkelsen RB, Contessa JN, Abell A, Valerie K, Schmidt-Ullrich RK . Compensatory ErbB3/c-Src signaling enhances carcinoma cell survival to ionizing radiation. Br Ca Res and Treat 2006; 95: 17–27.

    Article  Google Scholar 

  9. Tofilon PJ, Camphausen K . Molecular targets for tumor radiosensitization. Chem Rev 2009; 109: 2974–2988.

    Article  CAS  Google Scholar 

  10. Bowers G, Reardon D, Hewitt T, Dent P, Mikkelsen RB, Valerie K et al. The relative role of ErbB1-4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells. Oncogene 2001; 20: 1388–1397.

    Article  CAS  Google Scholar 

  11. Andarawewa K, Erickson A, Chou W, Costes S, Gascard P, Mott J et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 2007; 67: 8662–8670.

    Article  CAS  Google Scholar 

  12. Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F . Radiation-induced reprogramming of breast cancer cells. Stem Cells 2012; 30: 833–844.

    Article  CAS  Google Scholar 

  13. Mori K, Shibanuma M, Nose K . Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 2004; 64: 7464–7472.

    Article  CAS  Google Scholar 

  14. Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 2006; 66: 1712–1720.

    Article  CAS  Google Scholar 

  15. Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S et al. Nutrient sensor O-GlcNac transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 2010; 29: 2831–2842.

    Article  CAS  Google Scholar 

  16. Bektas N, Haaf A, Veeck J, Wild PJ, Luscher-Firzlaff J, Hartmann A et al. Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC Cancer 2008; 8: 42.

    Article  Google Scholar 

  17. Francis RE, Myatt SS, Krol J, Hartman J, Peck B, McGovern UB et al. FoxM1 is a target and downstream marker of HER2 overexpression in breast cancer. Int J Onc 2009; 35: 57–68.

    CAS  Google Scholar 

  18. Carr JR, Park HJ, Wang Z, Kiefer MM, Rachaudhuri P . FoxM1 mediates resistance to herceptin and paclitaxel. Cancer Res 2010; 70: 5054–5063.

    Article  CAS  Google Scholar 

  19. Raychaudhuri P, Park HJ . FoxM1: A master regulator of tumor metastasis. Cancer Res 2011; 71: 4329–4333.

    Article  CAS  Google Scholar 

  20. Neal CL, Yao J, Yang W, Zhou X, Nguyen NT, Lu J et al. 14-3-3ζ overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res 2009; 69: 3425–3432.

    Article  CAS  Google Scholar 

  21. Lu J, Guo H, Treekitkarnmongkol W, Li P, Zhang J, Shi B et al. 14-3-3 Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 2009; 16: 195–207.

    Article  CAS  Google Scholar 

  22. Danes CG, Wyszomierski SL, Lu J, Neal CL, Yang W, Yu D . 14-3-3ζ Down-regulates p53 in mammary epithelial cells and confers luminal filling. Cancer Res 2008; 68: 1760–1767.

    Article  CAS  Google Scholar 

  23. Muthuswamy S, Xiang B . Using three-dimensional acinar structures for molecular and cell biological assays. Methods Enzymol 2006; 406: 692.

    Article  Google Scholar 

  24. Hebner C, Weaver VM, Debnath J . Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annu Rev Pathol 2008; 3: 313–339.

    Article  CAS  Google Scholar 

  25. Haenssen KK, Caldwell SA, Shahriari KS, Jackson SR, Whelan KA, Klein-Szanto AJ et al. ErbB2 requires integrin α5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J Cell Sci 2010; 123: 1373–1382.

    Article  CAS  Google Scholar 

  26. Muthuswamy SK, Li D, Lielievre S, Bissell MJ, Brugge JS . ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 2001; 3: 785–792.

    Article  CAS  Google Scholar 

  27. Lawrence TS, Haken RKT, Giaccia A . Principles of radiation oncology. In: DeVita VTJ, Lawrence TS, Rosenberg E, (eds). DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology 8 edn. Lippincott Williams and Wilkins, Philadelphia, 2008, pp 307–336.

    Google Scholar 

  28. Lee GY, Kenny PA, Lee EH, Bissell MJ . Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 2007; 4: 359–365.

    Article  CAS  Google Scholar 

  29. Feinendegen LE . Reactive oxygen species in cell responses to toxic agents. Hu Exp Toxicol 2002; 21: 85–90.

    Article  CAS  Google Scholar 

  30. Leach JK, Van Tuyle G, Lin P-S, Schmidt-Ullrich RK, Mikkelsen RB . Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 2001; 61: 3894–3901.

    CAS  PubMed  Google Scholar 

  31. Sato K, Akaike T, Suga M, Ando M, Maeda H . Generation of free radicals from neocarzinostatin mediated by NADPH/cytochrome P-450 reductase via activation of enediyne chromophore. Biochem Biophys Res Commun 1994; 205: 1716–1723.

    Article  CAS  Google Scholar 

  32. Giannoni E, Taddei ML, Chiarugi P . Src redox regulation: again in the front line. Free Radic Biol Med 2010; 49: 516–527.

    Article  CAS  Google Scholar 

  33. Ishizawar RC, Miyake T, Parsons SJ . c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene 2007; 26: 3503–3510.

    Article  CAS  Google Scholar 

  34. Zhang S, Huang W-C, Li P, Guo H, Poh S-B, Brady SW et al. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 2011; 17: 461–470.

    Article  Google Scholar 

  35. Tan M, Li P, Klos KS, Lu J, Lan K-H, Nagata Y et al. ErbB2 promotes src synthesis and stability: novel mechanisms of src activation that confer breast cancer metastasis. Cancer Res 2005; 65: 1585–67.

    Google Scholar 

  36. Marcotte R, Zhou L, Kim H, Roskelly CD, Muller WJ . c-Src associates with ErbB2 through an interaction between catalytic domains and confers enhanced transforming potential. Mol Cell Biol 2009; 29: 5858–5871.

    Article  CAS  Google Scholar 

  37. Park HJ, Carr JR, Wang Z, Nogueira V, Hay N, Tyner AL et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J 2009; 28: 2908–2918.

    Article  CAS  Google Scholar 

  38. Mendes O, Kim H-T, Lungu G, Stoica G . MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clin Exp Metastasis 2007; 24: 341–351.

    Article  CAS  Google Scholar 

  39. Chabottaux V, Noel A . Breast cancer progression: insights into multifaceted matrix metalloproteinases. Clin Exp Metastasis 2007; 24: 647–656.

    Article  CAS  Google Scholar 

  40. Dai B, Kang SH, Gong W, Liu M, Aldape KD, Sawaya R et al. Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene 2007; 26: 6212–6219.

    Article  CAS  Google Scholar 

  41. Ahmad A, Wang Z, Kong D, Ali S, Li Y, Banerjee S et al. FoxM1 down-regulation leads to inhibition of proliferation, migration, and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Br Ca Res and Treat 2010; 122: 337–346.

    Article  CAS  Google Scholar 

  42. Bergamaschi A, Christensen BL, Katzenellenbogen BS . Reversal of endocrine resistance in breast cancer: interrelationships among 14-3-3ζ FoxM1, and a gene signature associated with mitosis. Br Ca Res 2011; 13: R70.

    Article  Google Scholar 

  43. Millour J, Constantinidou D, Stavropoulou AV, Wilson MSC, Myatt SS, Kwok JMM et al. FOXM1 is a transcriptional target of ER[alpha] and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene 2010; 29: 2983–2995.

    Article  CAS  Google Scholar 

  44. Bergamaschi A, Katzenellenbogen BS . Tamoxifen downregulation of miR-451 increases 14-3-3[zeta] and promotes breast cancer cell survival and endocrine resistance. Oncogene 2012; 31: 39–47.

    Article  CAS  Google Scholar 

  45. Koo C-Y, Muir KW, Lam EWF . FOXM1: from cancer initiation to progression and treatment. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2012; 1819: 28–37l.

    Article  CAS  Google Scholar 

  46. Neal CL, Yu D . 14-3-3ζ as a prognostic marker and therapeutic target for cancer. Expert Opin Ther Targets 2010; 14: 1343–1354.

    Article  CAS  Google Scholar 

  47. Tzivion G, Gupta VS, Kaplun L, Balan V . 14-3-3 proteins as potential oncogenes. Sem Cancer Biol 2006; 16: 203–213.

    Article  CAS  Google Scholar 

  48. Yang X, Cao W, Zhang L, Zhang W, Zhang X, Lin H . Targeting 14-3-3zeta in cancer therapy. Cancer Gene Ther 2012; 19: 153–159.

    Article  Google Scholar 

  49. Littler DR, Alvarez-Fernandez M, Stein A, Hibbert RG, Heidebrecht T, Aloy P et al. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nuc Acid Res 2010; 38: 4527–4538.

    Article  CAS  Google Scholar 

  50. McGovern UB, Francis RE, Peck B, Guest SK, Wang J, Myatt SS et al. Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 2009; 8: 582–591.

    Article  CAS  Google Scholar 

  51. Luo J, Solimini NL, Elledge SJ . Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823–837.

    Article  CAS  Google Scholar 

  52. Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa MC, Ramirez-Tortosa CL, Granados-Principal S, Lorente JA et al. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. biological bases to develop oxidative-based therapies. Critical Reviews in Oncology/Hematology 2011; 80: 347–368.

    Article  Google Scholar 

  53. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell 2007; 1: 555–567.

    Article  CAS  Google Scholar 

  54. Korkaya H, Paulson A, Iovino F, Wicha MS . HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27: 6120–6130.

    Article  CAS  Google Scholar 

  55. Gemenetzidis E, Elena-Costea D, Parkinson EK, Waseem A, Wan H, Teh M-T . Induction of human epithelial stem/progenitor expansion by FOXM1. Cancer Res 2010; 70: 9515–9526.

    Article  CAS  Google Scholar 

  56. O’Toole TE, Bialkowska K, Li X, Fox JEB . Tiam1 is recruited to β1-integrin complexes by 14-3-3ζ where it mediates integrin-induced Rac1 activation and motility. J Cell Physiol 2011; 226: 2965–2978.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gieira Jones and Prachi Thanawala for technical support and Dr Gianluca Gallo for the PI3K activating peptide. We would also like to thank Drs Jay Reiff and Jacqueline Emrich and the Radiation Oncology Department at Hahnemann University Hospital for their assistance. This work was supported by Drexel University College of Medicine CURE grants (to MJR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Azizkhan-Clifford or M J Reginato.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kambach, D., Sodi, V., Lelkes, P. et al. ErbB2, FoxM1 and 14-3-3ζ prime breast cancer cells for invasion in response to ionizing radiation. Oncogene 33, 589–598 (2014). https://doi.org/10.1038/onc.2012.629

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.629

Keywords

This article is cited by

Search

Quick links