Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Redox regulation in stem-like cancer cells by CD44 variant isoforms

Abstract

Increasing evidence indicates that several types of solid tumor are hierarchically organized and sustained by a distinct population of cancer stem cells (CSCs). CSCs possess enhanced mechanisms of protection from stress induced by reactive oxygen species (ROS) that render them resistant to chemo- and radiotherapy. Expression of CD44, especially variant isoforms (CD44v) of this major CSC marker, contributes to ROS defense through upregulation of the synthesis of reduced glutathione (GSH), the primary intracellular antioxidant. CD44v interacts with and stabilizes xCT, a subunit of the cystine-glutamate transporter xc(-), and thereby promotes cystine uptake for GSH synthesis. Given that cancer cells are often exposed to high levels of ROS during tumor progression, the ability to avoid the consequences of such exposure is required for cancer cell survival and propagation in vivo. CSCs, in which defense against ROS is enhanced by CD44v are thus thought to drive tumor growth, chemoresistance and metastasis. Therapy targeted to the CD44v-xCT system may therefore impair the ROS defense ability of CSCs and thereby sensitize them to currently available treatments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.

    CAS  PubMed  Google Scholar 

  2. Visvader JE, Lindeman GJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–768.

    CAS  PubMed  Google Scholar 

  3. Chiang AC, Massague J . Molecular basis of metastasis. N Engl J Med 2008; 359: 2814–2823.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gupta GP, Massague J . Cancer metastasis: building a framework. Cell 2006; 127: 679–695.

    CAS  PubMed  Google Scholar 

  5. Trachootham D, Alexandre J, Huang P . Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8: 579–591.

    CAS  PubMed  Google Scholar 

  6. Baumann M, Krause M, Hill R . Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8: 545–554.

    CAS  PubMed  Google Scholar 

  7. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458: 780–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Phillips TM, McBride WH, Pajonk F . The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006; 98: 1777–1785.

    PubMed  Google Scholar 

  9. Ailles LE, Weissman IL . Cancer stem cells in solid tumors. Curr Opin Biotechnol 2007; 18: 460–466.

    CAS  PubMed  Google Scholar 

  10. Lobo NA, Shimono Y, Qian D, Clarke MF . The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007; 23: 675–699.

    CAS  PubMed  Google Scholar 

  11. Zoller M . CD44: Can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 2011; 11: 254–267.

    PubMed  Google Scholar 

  12. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946–10951.

    CAS  PubMed  Google Scholar 

  14. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 10158–10163.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104: 973–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  17. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B . CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61: 1303–1313.

    CAS  PubMed  Google Scholar 

  18. Nagano O, Saya H . Mechanism and biological significance of CD44 cleavage. Cancer Sci 2004; 95: 930–935.

    CAS  PubMed  Google Scholar 

  19. Ponta H, Sherman L, Herrlich PA . CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4: 33–45.

    CAS  PubMed  Google Scholar 

  20. Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP . ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 2009; 33: 591–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991; 65: 13–24.

    CAS  PubMed  Google Scholar 

  22. Reber S, Matzku S, Gunthert U, Ponta H, Herrlich P, Zoller M . Retardation of metastatic tumor growth after immunization with metastasis-specific monoclonal antibodies. Int J Cancer 1990; 46: 919–927.

    CAS  PubMed  Google Scholar 

  23. Seiter S, Arch R, Reber S, Komitowski D, Hofmann M, Ponta H et al. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med 1993; 177: 443–455.

    CAS  PubMed  Google Scholar 

  24. Tanabe KK, Ellis LM, Saya H . Expression of CD44R1 adhesion molecule in colon carcinomas and metastases. Lancet 1993; 341: 725–726.

    CAS  PubMed  Google Scholar 

  25. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    PubMed  Google Scholar 

  26. Preston M, Sherman LS . Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front Biosci 2011; 3: 1165–1179.

    Google Scholar 

  27. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    CAS  PubMed  Google Scholar 

  28. Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008; 14: 181–187.

    CAS  PubMed  Google Scholar 

  29. DeGrendele HC, Estess P, Siegelman MH . Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 1997; 278: 672–675.

    CAS  PubMed  Google Scholar 

  30. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 2011; 19: 387–400.

    CAS  PubMed  Google Scholar 

  31. Shi X, Zhang Y, Zheng J, Pan J . Reactive oxygen species in cancer stem cells. Antioxid Redox Signal 2012; 16: 1215–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mielgo A, van Driel M, Bloem A, Landmann L, Gunthert U . A novel antiapoptotic mechanism based on interference of Fas signaling by CD44 variant isoforms. Cell Death Differ 2006; 13: 465–477.

    CAS  PubMed  Google Scholar 

  33. Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K . Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene 2012; 31: 149–160.

    CAS  PubMed  Google Scholar 

  34. Toole BP, Slomiany MG . Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resist Update 2008; 11: 110–121.

    CAS  Google Scholar 

  35. Pham PV, Phan NL, Nguyen NT, Truong NH, Duong TT, Le DV et al. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med 2011; 9: 209.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohata H, Ishiguro T, Aihara Y, Sato A, Sakai H, Sekine S et al. Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer Res 2012; 72: 5101–5110.

    CAS  PubMed  Google Scholar 

  38. Du L, Wang H, He L, Zhang J, Ni B, Wang X et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008; 14: 6751–6760.

    CAS  PubMed  Google Scholar 

  39. Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST . Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res 2008; 68: 3655–3661.

    CAS  PubMed  Google Scholar 

  40. Lopez JI, Camenisch TD, Stevens MV, Sands BJ, McDonald J, Schroeder JA . CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 2005; 65: 6755–6763.

    CAS  PubMed  Google Scholar 

  41. Boccaccio C, Comoglio PM . Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 2006; 6: 637–645.

    CAS  PubMed  Google Scholar 

  42. Kalluri R, Neilson EG . Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112: 1776–1784.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    CAS  PubMed  Google Scholar 

  44. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 2011; 121: 1064–1074.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 2011; 7: e1002218.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu H, Shen S et al. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 2010; 29: 3286–3300.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, Kuroki H et al. CD44s regulates the TGF-β-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res 2012; 72: 3414–3423.

    CAS  PubMed  Google Scholar 

  49. Takahashi E, Nagano O, Ishimoto T, Yae T, Suzuki Y, Shinoda T et al. Tumor necrosis factor-α regulates transforming growth factor-β-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction. J Biol Chem 2010; 285: 4060–4073.

    CAS  PubMed  Google Scholar 

  50. Bartolazzi A, Jackson D, Bennett K, Aruffo A, Dickinson R, Shields J et al. Regulation of growth and dissemination of a human lymphoma by CD44 splice variants. J Cell Sci 1995; 108: 1723–1733.

    CAS  PubMed  Google Scholar 

  51. Bennett KL, Modrell B, Greenfield B, Bartolazzi A, Stamenkovic I, Peach R et al. Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons. J Cell Biol 1995; 131: 1623–1633.

    CAS  PubMed  Google Scholar 

  52. Yae T, Tsuchihashi K, Ishimoto T, Motohara T, Yoshikawa M, Yoshida GJ et al. Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 2012; 3: 883.

    PubMed  Google Scholar 

  53. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat Cell Biol 2008; 10: 295–305.

    CAS  PubMed  Google Scholar 

  54. Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by Met signaling pathway. Cancer Cell 2012; 21: 66–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun S, Ning X, Zhang Y, Lu Y, Nie Y, Han S et al. Hypoxia-inducible factor-1α induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int 2009; 75: 1278–1287.

    CAS  PubMed  Google Scholar 

  56. Krishnamachary B, Penet MF, Nimmagadda S, Mironchik Y, Raman V, Solaiyappan M et al. Hypoxia regulates CD44 and its variant isoforms through HIF-1α in triple negative breast cancer. PLoS One 2012; 7: e44078.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kannagi R, Sakuma K, Miyazaki K, Lim KT, Yusa A, Yin J et al. Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: clues in the ongoing search for new tumor markers. Cancer Sci 2010; 101: 586–593.

    CAS  PubMed  Google Scholar 

  59. Hanley WD, Burdick MM, Konstantopoulos K, Sackstein R . CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity. Cancer Res 2005; 65: 5812–5817.

    CAS  PubMed  Google Scholar 

  60. Bennett KL, Jackson DG, Simon JC, Tanczos E, Peach R, Modrell B et al. CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol 1995; 128: 687–698.

    CAS  PubMed  Google Scholar 

  61. Yu WH, Woessner JF, McNeish JD, Stamenkovic I . CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 2002; 16: 307–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H . CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 2002; 16: 3074–3086.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Slomiany MG, Grass GD, Robertson AD, Yang XY, Maria BL, Beeson C et al. Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res 2009; 69: 1293–1301.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 2006; 12: 446–451.

    CAS  PubMed  Google Scholar 

  65. Tothova Z, Gilliland DG . FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007; 1: 140–152.

    CAS  PubMed  Google Scholar 

  66. Owusu-Ansah E, Banerjee U . Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009; 461: 537–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Macleod KF . The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system. Nat Rev Cancer 2008; 8: 769–781.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K et al. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 2006; 8: 1291–1297.

    CAS  PubMed  Google Scholar 

  69. Li J, Stouffs M, Serrander L, Banfi B, Bettiol E, Charnay Y et al. The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 2006; 17: 3978–3988.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Keith B, Simon MC . Hypoxia-inducible factors, stem cells, and cancer. Cell 2007; 129: 465–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hill RP, Marie-Egyptienne DT, Hedley DW . Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 2009; 19: 106–111.

    PubMed  Google Scholar 

  72. Adam-Vizi V, Chinopoulos C . Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006; 27: 639–645.

    CAS  PubMed  Google Scholar 

  73. Balaban RS, Nemoto S, Finkel T . Mitochondria, oxidants, and aging. Cell 2005; 120: 483–495.

    CAS  PubMed  Google Scholar 

  74. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    CAS  PubMed  Google Scholar 

  75. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR . p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 2007; 11: 191–205.

    CAS  PubMed  Google Scholar 

  77. Thannickal VJ, Fanburg BL . Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000; 279: L1005–L1028.

    CAS  PubMed  Google Scholar 

  78. Bedard K, Krause KH . The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245–313.

    CAS  PubMed  Google Scholar 

  79. Gregory AD, Houghton AM . Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 2011; 71: 2411–2416.

    CAS  PubMed  Google Scholar 

  80. Spitz DR, Azzam EI, Li JJ, Gius D . Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metast Rev 2004; 23: 311–322.

    CAS  Google Scholar 

  81. Golden EB, Pellicciotta I, Demaria S, Barcellos-Hoff MH, Formenti SC . The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol 2012; 2: 88.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hendry JH, West CM . Apoptosis and mitotic cell death: their relative contributions to normal-tissue and tumour radiation response. Int J Radiat Biol 1997; 71: 709–719.

    CAS  PubMed  Google Scholar 

  83. Conklin KA . Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 2004; 3: 294–300.

    CAS  PubMed  Google Scholar 

  84. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999; 274: 7936–7940.

    CAS  PubMed  Google Scholar 

  85. Arrick BA, Nathan CF . Glutathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res 1984; 44: 4224–4232.

    CAS  PubMed  Google Scholar 

  86. Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG . Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 2004; 37: 1511–1526.

    CAS  PubMed  Google Scholar 

  87. Meister A . Glutathione metabolism and its selective modification. J Biol Chem 1988; 263: 17205–17208.

    CAS  PubMed  Google Scholar 

  88. O’Brien ML, Tew KD . Glutathione and related enzymes in multidrug resistance. Eur J Cancer 1996; 32A: 967–978.

    PubMed  Google Scholar 

  89. Tew KD . Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994; 54: 4313–4320.

    CAS  PubMed  Google Scholar 

  90. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475: 231–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 2006; 10: 241–252.

    CAS  PubMed  Google Scholar 

  92. Huang Y, Dai Z, Barbacioru C, Sadee W . Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res 2005; 65: 7446–7454.

    CAS  PubMed  Google Scholar 

  93. Lo M, Wang YZ, Gout PW . The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 2008; 215: 593–602.

    CAS  PubMed  Google Scholar 

  94. Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y et al. Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 2005; 280: 37423–37429.

    CAS  PubMed  Google Scholar 

  95. Ishii T, Sugita Y, Bannai S . Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol 1987; 133: 330–336.

    CAS  PubMed  Google Scholar 

  96. Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H et al. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 2002; 277: 44765–44771.

    CAS  PubMed  Google Scholar 

  97. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003; 11: 619–633.

    CAS  PubMed  Google Scholar 

  98. Lewerenz J, Sato H, Albrecht P, Henke N, Noack R, Methner A et al. Mutation of ATF4 mediates resistance of neuronal cell lines against oxidative stress by inducing xCT expression. Cell Death Differ 2012; 19: 847–858.

    CAS  PubMed  Google Scholar 

  99. Lewerenz J, Maher P . Basal levels of eIF2α phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. J Biol Chem 2009; 284: 1106–1115.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang H, Tamba M, Kimata M, Sakamoto K, Bannai S, Sato H . Expression of the activity of cystine/glutamate exchange transporter, system x(c)(-), by xCT and rBAT. Biochem Biophys Res Commun 2003; 305: 611–618.

    CAS  PubMed  Google Scholar 

  101. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y . CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 2004; 447: 532–542.

    CAS  PubMed  Google Scholar 

  102. Baek S, Choi CM, Ahn SH, Lee JW, Gong G, Ryu JS et al. Exploratory clinical trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for imaging xC- transporter using positron emission tomography in patients with non-small cell lung or breast cancer. Clin Cancer Res 2012; 18: 5427–5437.

    CAS  PubMed  Google Scholar 

  103. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 2006; 12: 5615–5621.

    CAS  PubMed  Google Scholar 

  104. Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 2011; 9: 357–365.

    CAS  PubMed  Google Scholar 

  105. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1: 313–323.

    CAS  PubMed  Google Scholar 

  106. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 2009; 13: 2236–2252.

    PubMed  Google Scholar 

  107. Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci USA 2010; 107: 18115–18120.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25: 1696–1708.

    CAS  PubMed  Google Scholar 

  109. Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV . Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin Cancer Biol 2008; 18: 260–267.

    CAS  PubMed  Google Scholar 

  110. Weber GF, Bronson RT, Ilagan J, Cantor H, Schmits R, Mak TW . Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res 2002; 62: 2281–2286.

    CAS  PubMed  Google Scholar 

  111. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008; 10: 202–210.

    CAS  PubMed  Google Scholar 

  112. Qu Y, Wang J, Ray PS, Guo H, Huang J, Shin-Sim M et al. Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-κB signaling. J Clin Invest 2011; 121: 212–225.

    CAS  PubMed  Google Scholar 

  113. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R . Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 2011; 20: 300–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Anasagasti MJ, Martin JJ, Mendoza L, Obrador E, Estrela JM, McCuskey RS et al. Glutathione protects metastatic melanoma cells against oxidative stress in the murine hepatic microvasculature. Hepatology 1998; 27: 1249–1256.

    CAS  PubMed  Google Scholar 

  115. Obrador E, Carretero J, Ortega A, Medina I, Rodilla V, Pellicer JA et al. γ-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver. Hepatology 2002; 35: 74–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K Arai for help in preparation of the manuscript. The work in the authors’ laboratory was supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to HS) as well as by the Ministry’s Project for Development of Innovative Research on Cancer Therapeutics (P-Direct, to ON).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Nagano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagano, O., Okazaki, S. & Saya, H. Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 32, 5191–5198 (2013). https://doi.org/10.1038/onc.2012.638

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.638

Keywords

This article is cited by

Search

Quick links