Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EpCAM regulates cell cycle progression via control of cyclin D1 expression

Abstract

The epithelial cell adhesion molecule (EpCAM) is an integral transmembrane protein that is frequently overexpressed in embryonic stem cells, tissue progenitors, carcinomas and cancer-initiating cells. In cancer cells, expression of EpCAM is associated with enhanced proliferation and upregulation of target genes including c-myc. However, the exact molecular mechanisms underlying the observed EpCAM-dependent cell proliferation remained unexplored. Here, we show that EpCAM directly affects cell cycle progression via its capacity to regulate the expression of cyclin D1 at the transcriptional level and depending on the direct interaction partner FHL2 (four-and-a-half LIM domains protein 2). As a result, downstream events such as phosphorylation of the retinoblastoma protein (Rb) and expression of cyclins E and A are similarly affected. In vivo, EpCAM expression strength and pattern are both positively correlated with the proliferation marker Ki67, high expression and nuclear localisation of cyclin D1, and Rb phosphorylation. Thus, EpCAM enhances cell cycle progression via the classical cyclin-regulated pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Munz M, Baeuerle PA, Gires O . The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res 2009; 69: 5627–5629.

    Article  CAS  PubMed  Google Scholar 

  2. Balzar M, Winter MJ, de Boer CJ, Litvinov SV . The biology of the 17-1A antigen (Ep-CAM). J Mol Med 1999; 77: 699–712.

    Article  CAS  PubMed  Google Scholar 

  3. Went P, Vasei M, Bubendorf L, Terracciano L, Tornillo L, Riede U et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer 2006; 94: 128–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Visvader JE, Lindeman GJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–768.

    Article  CAS  PubMed  Google Scholar 

  5. Gires O, Klein CA, Baeuerle PA . On the abundance of EpCAM on cancer stem cells. Nat Rev Cancer 2009; 9: 143 author reply 143.

    Article  CAS  PubMed  Google Scholar 

  6. Ng VY, Ang SN, Chan JX, Choo AB . Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells 2009; 28: 29–35.

    Article  Google Scholar 

  7. Gonzalez B, Denzel S, Mack B, Conrad M, Gires O . EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells 2009; 27: 1782–1791.

    Article  CAS  PubMed  Google Scholar 

  8. Lu TY, Lu RM, Liao MY, Yu J, Chung CH, Kao CF et al. Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. J Biol Chem 2010; 285: 8719–8732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Denzel S, Maetzel D, Mack B, Eggert C, Barr G, Gires O . Initial activation of EpCAM cleavage via cell-to-cell contact. BMC Cancer 2009; 9: 402.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 2009; 11: 162–171.

    Article  CAS  PubMed  Google Scholar 

  11. Chen HF, Chuang CY, Lee WC, Huang HP, Wu HC, Ho HN et al. Surface marker epithelial cell adhesion molecule and E-cadherin facilitate the identification and selection of induced pluripotent stem cells. Stem Cell Rev 2011; 7: 722–735.

    Article  CAS  Google Scholar 

  12. Huang HP, Chen PH, Yu CY, Chuang CY, Stone L, Hsiao WC et al. Epithelial cell adhesion molecule (EpCAM) complex proteins promote transcription factor-mediated pluripotency reprogramming. J Biol Chem 2011; 286: 33520–33532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maaser K, Borlak J . A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators. Br J Cancer 2008; 99: 1635–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Munz M, Kieu C, Mack B, Schmitt B, Zeidler R, Gires O . The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 2004; 23: 5748–5758.

    Article  PubMed  Google Scholar 

  15. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96: 5522–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weinberg RA . The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  17. Mittnacht S . Control of pRB phosphorylation. Curr Opin Genet Dev 1998; 8: 21–27.

    Article  CAS  PubMed  Google Scholar 

  18. Geng Y, Yu Q, Sicinska E, Das M, Bronson RT, Sicinski P . Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc Natl Acad Sci USA 2001; 98: 194–199.

    Article  CAS  PubMed  Google Scholar 

  19. Litvinov SV, van Driel W, van Rhijn CM, Bakker HA, van Krieken H, Fleuren GJ et al. Expression of Ep-CAM in cervical squamous epithelia correlates with an increased proliferation and the disappearance of markers for terminal differentiation. Am J Pathol 1996; 148: 865–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schon MP, Schon M, Klein CE, Blume U, Bisson S, Orfanos CE . Carcinoma-associated 38-kD membrane glycoprotein MH 99/KS 1/4 is related to proliferation and age of transformed epithelial cell lines. J Invest Dermatol 1994; 102: 987–991.

    Article  CAS  PubMed  Google Scholar 

  21. Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA et al. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 2004; 64: 5818–5824.

    Article  CAS  PubMed  Google Scholar 

  22. Munz M, Hofmann T, Scheibe B, Gange M, Junghanns K, Zeidler R et al. The carcinoma-associated antigen EpCAM induces glyoxalase 1 resulting in enhanced methylglyoxal turnover. Cancer Genomics Proteomics 2004; 1: 241–247.

    PubMed  Google Scholar 

  23. Johannessen M, Moller S, Hansen T, Moens U, Van Ghelue M . The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell Mol Life Sci 2006; 63: 268–284.

    Article  CAS  PubMed  Google Scholar 

  24. Labalette C, Nouet Y, Sobczak-Thepot J, Armengol C, Levillayer F, Gendron MC et al. The LIM-only protein FHL2 regulates cyclin D1 expression and cell proliferation. J Biol Chem 2008; 283: 15201–15208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo Z, Zhang W, Xia G, Niu L, Zhang Y, Wang X et al. Sp1 upregulates the four and half lim 2 (FHL2) expression in gastrointestinal cancers through transcription regulation. Mol Carcinog 2010; 49: 826–836.

    CAS  PubMed  Google Scholar 

  26. Spizzo G, Went P, Dirnhofer S, Obrist P, Moch H, Baeuerle PA et al. Overexpression of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer. Gynecol Oncol 2006; 103: 483–488.

    Article  CAS  PubMed  Google Scholar 

  27. Gabriel B, Fischer DC, Orlowska-Volk M, zur Hausen A, Schule R, Muller JM et al. Expression of the transcriptional coregulator FHL2 in human breast cancer: a clinicopathologic study. J Soc Gynecol Investig 2006; 13: 69–75.

    Article  CAS  PubMed  Google Scholar 

  28. Gabriel B, Mildenberger S, Weisser CW, Metzger E, Gitsch G, Schule R et al. Focal adhesion kinase interacts with the transcriptional coactivator FHL2 and both are overexpressed in epithelial ovarian cancer. Anticancer Res 2004; 24: 921–927.

    CAS  PubMed  Google Scholar 

  29. Ng CF, Zhou WJ, Ng PK, Li MS, Ng YK, Lai PB et al. Characterization of human FHL2 transcript variants and gene expression regulation in hepatocellular carcinoma. Gene 2011; 481: 41–47.

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 2008; 68: 1451–1461.

    Article  CAS  PubMed  Google Scholar 

  31. Soucek T, Pusch O, Hengstschlager-Ottnad E, Adams PD, Hengstschlager M . Deregulated expression of E2F-1 induces cyclin A- and E-associated kinase activities independently from cell cycle position. Oncogene 1997; 14: 2251–2257.

    Article  CAS  PubMed  Google Scholar 

  32. Schulze A, Zerfass K, Spitkovsky D, Middendorp S, Berges J, Helin K et al. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc Natl Acad Sci USA 1995; 92: 11264–11268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jansen-Durr P, Meichle A, Steiner P, Pagano M, Finke K, Botz J et al. Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA 1993; 90: 3685–3689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamashita T, Budhu A, Forgues M, Wang XW . Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res 2007; 67: 10831–10839.

    Article  CAS  PubMed  Google Scholar 

  35. Sankpal NV, Willman MW, Fleming TP, Mayfield JD, Gillanders WE . Transcriptional repression of epithelial cell adhesion molecule contributes to p53 control of breast cancer invasion. Cancer Res 2009; 69: 753–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nasr AF, Nutini M, Palombo B, Guerra E, Alberti S . Mutations of TP53 induce loss of DNA methylation and amplification of the TROP1 gene. Oncogene 2003; 22: 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  37. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 2005; 7: 165–171.

    Article  CAS  PubMed  Google Scholar 

  38. Michalides R, van Veelen N, Hart A, Loftus B, Wientjens E, Balm A . Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck. Cancer Res 1995; 55: 975–978.

    CAS  PubMed  Google Scholar 

  39. Martin B, Schneider R, Janetzky S, Waibler Z, Pandur P, Kuhl M et al. The LIM-only protein FHL2 interacts with beta-catenin and promotes differentiation of mouse myoblasts. J Cell Biol 2002; 159: 113–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yanamoto S, Kawasaki G, Yoshitomi I, Iwamoto T, Hirata K, Mizuno A . Clinicopathologic significance of EpCAM expression in squamous cell carcinoma of the tongue and its possibility as a potential target for tongue cancer gene therapy. Oral Oncol 2007; 43: 869–877.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Gires.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves-Pérez, A., Mack, B., Maetzel, D. et al. EpCAM regulates cell cycle progression via control of cyclin D1 expression. Oncogene 32, 641–650 (2013). https://doi.org/10.1038/onc.2012.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.75

Keywords

This article is cited by

Search

Quick links