Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer

Abstract

Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. In the study we demonstrated that CD133 expression was the highest in triple-negative (TN) breast cancer specimens. Importantly, VM showed statistical correlation with CD133+ expression. The presence of the close relationship between VM and CD133+ expression might be central for TN tumor relapse and progression. The TN breast cancer cell line, MDA-MB-231 cells developed a range of colony morphologies paralleling the holoclone, meroclone and paraclone morphologies produced by normal keratinocytes and other epithelial cancer cell lines when plated at clonal densities. Holoclone cells were capable of forming more colonies on soft agar than meroclone cells and paraclone cells, suggesting that holoclone cells had higher self-renew potential and might harbors cancer stem cells (CSCs) subpopulation. Strikingly, it was holoclone that displayed CD133+ phenotype and formed VM. In addition, holoclone acquired endothelial cell marker vascular endothelial-cadherin expression and upregulated VM mediators matrix metalloproteinase (MMP)-2 and MMP-9 expression. The subpopulation with holoclone morphology, CD133+ phenotype and CSCs characteristics might have the capacity of transdifferentiation and contributed to VM in TN breast cancer. The related molecular pathways may be used as novel therapeutic targets for the inhibition of angiogenesis and metastasis in TN breast carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

3D:

three dimensional

CFE:

colony forming efficiency

CSCs:

cancer stem cells

MMPs:

matrix metalloproteinases

PAS:

periodic acid-Schiff

TN:

triple-negative

VE:

vascular endothelial

VM:

vasculogenic mimicry

References

  1. Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  Google Scholar 

  2. Zhong X, Li Y, Peng F, Huang B, Lin J, Zhang W et al. Identification of tumorigenic retinal stem-like cells in human solid retinoblastomas. Int J Cancer 2007; 121: 2125–2131.

    Article  CAS  Google Scholar 

  3. Yan X, Ma L, Yi D, Yoon JG, Diercks A, Foltz G et al. A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Proc Natl Acad Sci USA 2011; 108: 1591–1596.

    Article  CAS  Google Scholar 

  4. Eaton CL, Colombel M, van der Pluijm G, Cecchini M, Wetterwald A, Lippitt J et al. Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate 2010; 70: 875–882.

    PubMed  Google Scholar 

  5. Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 2005; 319: 15–26.

    Article  CAS  Google Scholar 

  6. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L . Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 2008; 10: R10.

    Article  Google Scholar 

  7. Shen R, Ye Y, Chen L, Yan Q, Barsky SH, Gao JX . Precancerous stem cells can serve as tumor vasculogenic progenitors. PLoS ONE 2008; 3: e1652.

    Article  Google Scholar 

  8. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010; 468: 829–833.

    Article  CAS  Google Scholar 

  9. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 2010; 51: 545–556.

    Article  CAS  Google Scholar 

  10. Zhang S, Zhang D, Sun B . Vasculogenic mimicry: current status and future prospects. Cancer Lett 2007; 7: 157–164.

    Article  CAS  Google Scholar 

  11. Wang JY, Sun T, Zhao XL, Zhang SW, Zhang DF, Gu Q et al. Functional significance of VEGF-a in human ovarian carcinoma: role in vasculogenic mimicry. Cancer Biol Ther 2008; 7: 758–766.

    Article  CAS  Google Scholar 

  12. Shevde LA, Metge BJ, Mitra A, Xi Y, Ju J, King JA et al. Spheroid-forming subpopulation of breast cancer cells demonstrates vasculogenic mimicry via hsa-miR-299–5p regulated de novo expression of osteopontin. J Cell Mol Med 2010; 14: 1693–1706.

    Article  CAS  Google Scholar 

  13. Ping YF, Bian XW . Cancer stem cells switch on tumor neovascularization. Curr Mol Med 2011; 11: 69–75.

    Article  CAS  Google Scholar 

  14. Dong J, Zhao Y, Huang Q, Fei X, Diao Y, Shen Y et al. Glioma stem/progenitor cells contribute to neovascularization via transdifferentiation. Stem Cell Rev 2011; 7: 141–152.

    Article  Google Scholar 

  15. Monzani E, La Porta CA . Targeting cancer stem cells to modulate alternative vascularization mechanisms. Stem Cell Rev 2008; 4: 51–56.

    Article  Google Scholar 

  16. Bruno S, Bussolati B, Grange C, Collino F, Graziano ME, Ferrando U et al. CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 2006; 169: 2223–2235.

    Article  CAS  Google Scholar 

  17. Dean M . Cancer stem cells: redefining the paradigm of cancer treatment strategies. Mol Interv 2006; 6: 140–148.

    Article  CAS  Google Scholar 

  18. Immervoll H, Hoem D, Sakariassen PØ, Steffensen OJ, Molven A . Expression of the ‘stem cell marker’ CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 2008; 8: 48.

    Article  Google Scholar 

  19. Yeh CT, Kuo CJ, Lai MW, Chen TC, Lin CY, Yeh TS et al. CD133-positive hepatocellular carcinoma in an area endemic for hepatitis B virus infection. BMC Cancer 2009; 9: 324.

    Article  Google Scholar 

  20. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329–2334.

    Article  CAS  Google Scholar 

  21. Locke M, Heywood M, Fawell S, Mackenzie IC . Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 2005; 65: 8944–8950.

    Article  CAS  Google Scholar 

  22. Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG . PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 2008; 68: 1820–1825.

    Article  CAS  Google Scholar 

  23. Honeth G, Bendahl PO, Ringnér M, Saal LH, Gruvberger-Saal SK, Lövgren K et al. The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res 2008; 10: R53.

    Article  Google Scholar 

  24. Zhang K, Waxman DJ . PC3 prostate tumor-initiating cells with molecular profile FAM65Bhigh/MFI2low/LEF1low increase tumor angiogenesis. Mol Cancer 2010; 9: 319.

    Article  CAS  Google Scholar 

  25. Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA 2001; 98: 8018–8023.

    Article  CAS  Google Scholar 

  26. Seftor EA, Meltzer PS, Schatteman GC, Gruman LM, Hess AR, Kirschmann DA et al. Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncol Hematol 2002; 44: 17–27.

    Article  Google Scholar 

  27. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010; 468: 824–828.

    Article  CAS  Google Scholar 

  28. Liu WB, Xu GL, Jia WD, Li JS, Ma JL, Chen K et al. Prognostic significance and mechanisms of patterned matrix vasculogenic mimicry in hepatocellular carcinoma. Med Oncol 2010; 28 (Suppl 1): S228–S238.

    PubMed  Google Scholar 

  29. Chen LX, He YJ, Zhao SZ, Wu JG, Wang JT, Zhu LM et al. Inhibition of tumor growth and vasculogenic mimicry by curcumin through down-regulation of the EphA2/PI3K/MMP pathway in a murine choroidal melanoma model. Cancer Biol Ther 2011; 11: 229–235.

    Article  CAS  Google Scholar 

  30. Shevde LA, Metge BJ, Mitra A, Xi Y, Ju J, King JA et al. Phosphoinositide 3–Kinase Regulates Membrane Type 1-Matrix Metalloproteinase (MMP) and MMP-2 Activity during Melanoma Cell Vasculogenic Mimicry. J Cell Mol Med 2010; 14: 1693–1706.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant from Key project of the National Natural Science Foundation of China (No. 30830049), the International Cooperation project of China-Sweden (No. 09ZCZDSF04400), the National Natural Science Foundation of China (No. 81172046 and No. 81173091) and the 973 Program from the Ministry of Science and Technology of China (No. 2009CB918903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B C Sun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Sun, B., Zhao, X. et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene 32, 544–553 (2013). https://doi.org/10.1038/onc.2012.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.85

Keywords

This article is cited by

Search

Quick links