Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF

Abstract

The microphthalmia-associated transcription factor (MITF) is indispensable for the viability of melanocytic cells, is an oncogene in melanoma and has a cell type-specific expression pattern. As the modulation of MITF activity by direct chemical targeting remains a challenge, we assessed a panel of drugs for their ability to downregulate MITF expression or activity by targeting its upstream modulators. We found that the multi-kinase inhibitors midostaurin and sunitinib downregulate MITF protein levels. To identify the target molecules shared by both the drugs in melanocytic cells, a chemical proteomic approach was applied and AMP-activated kinase (AMPK) was identified as the relevant target for the observed phenotype. RNA interference and chemical inhibition of AMPK led to a decrease in MITF protein levels. Reduction of MITF protein levels was the result of proteasomal degradation, which was preceded by enhanced phosphorylation of MITF mediated by ERK. As expected, downregulation of MITF protein levels by AMPK inhibition was associated with decreased viability. Together, these results identify AMPK as an important regulator for the maintenance of MITF protein levels in melanocytic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436: 117–122.

    Article  CAS  PubMed  Google Scholar 

  2. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K et al. A sumoylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011; 480: 94–98.

    Article  CAS  PubMed  Google Scholar 

  3. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011; 480: 99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK et al. Bcl2 regulation by the melanocyte master regulator MITF modulates lineage survival and melanoma cell viability. Cell 2002; 109: 707–718.

    Article  CAS  PubMed  Google Scholar 

  5. Goding CR . Commentary. A picture of MITF in melanoma immortality. Oncogene 2011; 30: 2304–2306.

    Article  CAS  PubMed  Google Scholar 

  6. Strub T, Giuliano S, Ye T, Bonet C, Keime C, Kobi D et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 2011; 30: 2319–2332.

    Article  CAS  PubMed  Google Scholar 

  7. Widlund HR, Fisher DE . Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 2003; 22: 3035–3041.

    Article  CAS  PubMed  Google Scholar 

  8. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  9. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE . MAP kinase links the transcription factor microphthalmia to c-Kit signalling in melanocytes. Nature 1998; 391: 298–301.

    Article  CAS  PubMed  Google Scholar 

  10. Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER et al. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 2000; 14: 301–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeda K, Takemoto C, Kobayashi I, Watanabe A, Nobukuni Y, Fisher DE et al. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum Mol Genet 2000; 9: 125–132.

    Article  CAS  PubMed  Google Scholar 

  12. Miller AJ, Levy C, Davis IJ, Razin E, Fisher DE . Sumoylation of MITF and its related family members TFE3 and TFEB. J Biol Chem 2005; 280: 146–155.

    Article  CAS  PubMed  Google Scholar 

  13. Murakami H, Arnheiter H . Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res 2005; 18: 265–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS et al. MITF regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006; 20: 3426–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoek KS, Goding CR . Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 2010; 23: 746–759.

    Article  CAS  PubMed  Google Scholar 

  16. Giuliano S, Cheli Y, Ohanna M, Bonet C, Beuret L, Bille K et al. Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Res 2010; 70: 3813–3822.

    Article  CAS  PubMed  Google Scholar 

  17. Cheli Y, Giuliano S, Botton T, Rocchi S, Hofman V, Hofman P et al. MITF is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 2011; 30: 2307–2318.

    Article  CAS  PubMed  Google Scholar 

  18. Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R . Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One 2008; 3: e2734.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008; 26: 127–132.

    Article  CAS  PubMed  Google Scholar 

  20. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009; 114: 2984–2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fay JR, Steele V, Crowell JA . Energy homeostasis and cancer prevention: the AMP-activated protein kinase. Cancer Prev Res (Phila) 2009; 2: 301–309.

    Article  CAS  Google Scholar 

  22. Carling D, Zammit VA, Hardie DG . A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 1987; 223: 217–222.

    Article  CAS  PubMed  Google Scholar 

  23. Ha J, Daniel S, Broyles SS, Kim KH . Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem 1994; 269: 22162–22168.

    CAS  PubMed  Google Scholar 

  24. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hardie DG . AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25: 1895–1908.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS et al. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res 2009; 69: 4018–4026.

    Article  CAS  PubMed  Google Scholar 

  27. Kim MJ, Park IJ, Yun H, Kang I, Choe W, Kim SS et al. AMP-activated protein kinase antagonizes pro-apoptotic extracellular signal-related kinase activation by inducing dual-specificity protein phosphatases in response to glucose deprivation in HCT116 carcinoma. J Biol Chem 2010; 285: 14617–14627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Junttila MR, Li SP, Westermarck J . Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2008; 22: 954–965.

    Article  CAS  PubMed  Google Scholar 

  29. Lee KH, Lee CT, Kim YW, Han SK, Shim YS, Yoo CG . Preheating accelerates mitogen-activated protein (MAP) kinase inactivation post-heat shock via heat shock protein 70-mediated increase in phosphorylated MAP kinase phosphatase-1. J Biol Chem 2005; 280: 13179–13186.

    Article  CAS  PubMed  Google Scholar 

  30. Steingrimsson E, Moore KJ, Lamoreux ML, Ferre-D'Amare AR, Burley SK, Zimring DC et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 1994; 8: 256–263.

    Article  CAS  PubMed  Google Scholar 

  31. Yokoyama S, Feige E, Poling LL, Levy C, Widlund HR, Khaled M et al. Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell Melanoma Res 2008; 21: 457–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hagelkruys A, Sawicka A, Rennmayr M, Seiser C . The biology of HDAC in cancer: the nuclear and epigenetic components. Handb Exp Pharmacol 2011; 206: 13–37.

    Article  CAS  PubMed  Google Scholar 

  33. Laderoute KR, Calaoagan JM, Madrid PB, Klon AE, Ehrlich PJ . SU11248 (sunitinib) directly inhibits the activity of mammalian 5'-AMP-activated protein kinase (AMPK). Cancer Biol Ther 2010; 10: 68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Esteve-Puig R, Canals F, Colome N, Merlino G, Recio JA . Uncoupling of the LKB1-AMPKalpha energy sensor pathway by growth factors and oncogenic BRAF. PLoS One 2009; 4: e4771.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 2009; 33: 237–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2005; 2: 9–19.

    Article  CAS  PubMed  Google Scholar 

  37. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA . The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 2005; 280: 29060–29066.

    Article  CAS  PubMed  Google Scholar 

  38. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2005; 2: 21–33.

    Article  CAS  PubMed  Google Scholar 

  39. Mihaylova MM, Shaw RJ . The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13: 1016–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Du J, Guan T, Zhang H, Xia Y, Liu F, Zhang Y . Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts. Biochem Biophys Commun 2008; 368: 402–407.

    Article  CAS  Google Scholar 

  41. Vaahtomeri K, Makela TP . Molecular mechanisms of tumor suppression by LKB1. FEBS Lett 2011; 585: 944–951.

    Article  CAS  PubMed  Google Scholar 

  42. Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T et al. Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res 2010; 23: 809–819.

    Article  CAS  PubMed  Google Scholar 

  43. Lee KH, Hsu EC, Guh JH, Yang HC, Wang D, Kulp SK et al. Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. J Biol Chem 2011; 286: 39247–39258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bodmer M, Meier C, Krahenbuhl S, Jick SS, Meier CR . Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care 2010; 33: 1304–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J et al. 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 2006; 26: 5336–5347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park HU, Suy S, Danner M, Dailey V, Zhang Y, Li H et al. AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther 2009; 8: 733–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis 2011; 2: e199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Janjetovic K, Harhaji-Trajkovic L, Misirkic-Marjanovic M, Vucicevic L, Stevanovic D, Zogovic N et al. In vitro and in vivo anti-melanoma action of metformin. Eur J Pharmacol 2011; 668: 373–382.

    Article  CAS  PubMed  Google Scholar 

  49. Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 2007; 110: 4055–4063.

    Article  CAS  PubMed  Google Scholar 

  50. Fernbach NV, Planyavsky M, Muller A, Breitwieser FP, Colinge J, Rix U et al. Acid elution and one-dimensional shotgun analysis on an Orbitrap mass spectrometer: an application to drug affinity chromatography. J Proteome Res 2009; 8: 4753–4765.

    Article  CAS  PubMed  Google Scholar 

  51. Rappsilber J, Ishihama Y, Mann M . Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 2003; 75: 663–670.

    Article  CAS  PubMed  Google Scholar 

  52. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004; 3: 1154–1169.

    Article  CAS  PubMed  Google Scholar 

  53. Gilar M, Olivova P, Daly AE, Gebler JC . Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 2005; 28: 1694–1703.

    Article  CAS  PubMed  Google Scholar 

  54. Bennett KL, Funk M, Tschernutter M, Breitwieser FP, Planyavsky M, Ubaida Mohien C et al. Proteomic analysis of human cataract aqueous humour: comparison of one-dimensional gel LCMS with two-dimensional LCMS of unlabelled and iTRAQ(R)-labelled specimens. J Proteomics 2011; 74: 151–166.

    Article  CAS  PubMed  Google Scholar 

  55. Colinge J, Masselot A, Giron M, Dessingy T, Magnin J . OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 2003; 3: 1454–1463.

    Article  CAS  PubMed  Google Scholar 

  56. Breitwieser FP, Muller A, Dayon L, Kocher T, Hainard A, Pichler P et al. General statistical modeling of data from protein relative expression isobaric tags. J Proteome Res 2011; 10: 2758–2766.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hans Widlund (Harvard Skin Disease Research Center, Brigham and Women’s Hospital, Boston, MA, USA) for providing us with human immortalised melanocytes with and without ectopic expression of BRAFV600E and HA-MITF as described in Garraway et al.1 We thank Gaurav Pathria for helpful discussions and critical reading of the manuscript. This study was funded by FWF-Austrian Science Fund (L590-B12) to SNW. The team at CeMM is supported by the Austrian Academy of Sciences, and the GEN-AU initiative of the Austrian Federal Ministry for Science and Research (PLACEBO GZ BMWF-70.081/0018-II/1a/2008 and APP-III 820965).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V Borgdorff or S N Wagner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgdorff, V., Rix, U., Winter, G. et al. A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF. Oncogene 33, 2531–2539 (2014). https://doi.org/10.1038/onc.2013.185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.185

Keywords

This article is cited by

Search

Quick links