Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EVI1 oncogene promotes KRAS pathway through suppression of microRNA-96 in pancreatic carcinogenesis

Abstract

Despite frequent KRAS mutation, the early molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) development have not been fully elucidated. By tracking a potential regulator of another feature of PDAC precursors, acquisition of foregut or gastric epithelial gene signature, we herein report that aberrant overexpression of ecotropic viral integration site 1 (EVI1) oncoprotein, which is usually absent in normal pancreatic duct, is a widespread marker across the full spectrum of human PDAC precursors and PDAC. In pancreatic cancer cells, EVI1 depletion caused remarkable inhibition of cell growth and migration, indicating its oncogenic roles. Importantly, we found that EVI1 upregulated KRAS expression through suppression of a potent KRAS suppressor, miR-96, in pancreatic cancer cells. Collectively, the present findings suggest that EVI1 overexpression and KRAS mutation converge on activation of the KRAS pathway in early phases of pancreatic carcinogenesis and propose EVI1 and/or miR-96 as early markers and therapeutic targets in this dismal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hruban R, Boffetta P, Hiraoka N, Iacobuzio-Donahue C, Kato Y, Kern S et al. Tumours of the pancreas. In: Bosman F, Carneiro F, Hruban R, Theise N eds). WHO Classification of Tumours of the Digestive System 4th edn International Agency for Research on Cancer (IARC), Lyon, 2010, pp 279–337.

    Google Scholar 

  2. Prasad NB, Biankin AV, Fukushima N, Maitra A, Dhara S, Elkahloun AG et al. Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res 2005; 65: 1619–1626.

    Article  CAS  PubMed  Google Scholar 

  3. Kim GE, Bae HI, Park HU, Kuan SF, Crawley SC, Ho JJ et al. Aberrant expression of MUC5AC and MUC6 gastric mucins and sialyl Tn antigen in intraepithelial neoplasms of the pancreas. Gastroenterology 2002; 123: 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  4. Yonezawa S, Higashi M, Yamada N, Yokoyama S, Goto M . Significance of mucin expression in pancreatobiliary neoplasms. J Hepatobiliary Pancreat Sci 2010; 17: 108–124.

    Article  PubMed  Google Scholar 

  5. Tanaka M, Shibahara J, Fukushima N, Shinozaki A, Umeda M, Ishikawa S et al. Claudin-18 is an early-stage marker of pancreatic carcinogenesis. J Histochem Cytochem 2011; 59: 942–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris JPt, Wang SC, Hebrok M . KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 2010; 10: 683–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hruban R, Pitman M, Klimstra D . Tuomrs of the pancreas. In: Silverberg S (ed). AFIP Atlas of Tumor Pathology. American Registry of Pathology, Washington DC, 2007, pp 51–164.

    Google Scholar 

  8. Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 2003; 4: 111–120.

    Article  CAS  PubMed  Google Scholar 

  9. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437–450.

    Article  CAS  PubMed  Google Scholar 

  10. De La OJ, Emerson LL, Goodman JL, Froebe SC, Illum BE, Curtis AB et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci USA 2008; 105: 18907–18912.

    Article  Google Scholar 

  11. Goyama S, Kurokawa M . Pathogenetic significance of ecotropic viral integration site-1 in hematological malignancies. Cancer Sci 2009; 100: 990–995.

    Article  CAS  PubMed  Google Scholar 

  12. Yoshimi A, Kurokawa M . Evi1 forms a bridge between the epigenetic machinery and signaling pathways. Oncotarget 2011; 2: 575–586.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM et al. Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics 2005; 86: 127–141.

    Article  CAS  PubMed  Google Scholar 

  14. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 2005; 21: 2933–2942.

    Article  CAS  PubMed  Google Scholar 

  15. Quandt K, Frech K, Karas H, Wingender E, Werner T . MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23: 4878–4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song Y, Washington MK, Crawford HC . Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res 2010; 70: 2115–2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwei KA, Bashyam MD, Kao J, Ratheesh R, Reddy EC, Kim YH et al. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet 2008; 4: e1000081.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H . The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 2001; 97: 2815–2822.

    Article  CAS  PubMed  Google Scholar 

  19. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 1998; 394: 92–96.

    Article  CAS  PubMed  Google Scholar 

  20. Kurokawa M, Mitani K, Yamagata T, Takahashi T, Izutsu K, Ogawa S et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J 2000; 19: 2958–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y, Nitta E et al. Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 2011; 117: 3617–3628.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Chen L, Ko TC, Fields AP, Thompson EA . Evi1 is a survival factor which conveys resistance to both TGFbeta- and taxol-mediated cell death via PI3K/AKT. Oncogene 2006; 25: 3565–3575.

    Article  CAS  PubMed  Google Scholar 

  23. Gysin S, Lee SH, Dean NM, McMahon M . Pharmacologic inhibition of RAF–;>MEK–;>ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Canceer Res 2005; 65: 4870–4880.

    Article  CAS  Google Scholar 

  24. Suzuki HI, Miyazono K . Dynamics of microRNA biogenesis: crosstalk between p53 network and microRNA processing pathway. J Mol Med (Berl) 2010; 88: 1085–1094.

    Article  CAS  Google Scholar 

  25. Suzuki HI, Miyazono K . Emerging complexity of microRNA generation cascades. J Biochem 2011; 149: 15–25.

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K . Modulation of microRNA processing by p53. Nature 2009; 460: 529–533.

    Article  CAS  PubMed  Google Scholar 

  27. Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH . miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras. Biochem Biophys Res Commun 2011; 404: 896–902.

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009; 28: 1385–1392.

    Article  CAS  PubMed  Google Scholar 

  29. Gao JS, Zhang Y, Tang X, Tucker LD, Tarwater PM, Quesenberry PJ et al. The Evi1, microRNA-143, K-Ras axis in colon cancer. FEBS Lett 2011; 585: 693–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007; 26: 4442–4452.

    Article  CAS  PubMed  Google Scholar 

  31. Gomez-Benito M, Conchillo A, Garcia MA, Vazquez I, Maicas M, Vicente C et al. EVI1 controls proliferation in acute myeloid leukaemia through modulation of miR-1-2. Br J Cancer 2010; 103: 1292–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Weer A, Van der Meulen J, Rondou P, Taghon T, Konrad TA, De Preter K et al. EVI1-mediated down regulation of MIR449A is essential for the survival of EVI1 positive leukaemic cells. Br J Haematol 2011; 154: 337–348.

    Article  CAS  PubMed  Google Scholar 

  33. Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 2010; 24: 447–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Senyuk V, Premanand K, Xu P, Qian Z, Nucifora G . The oncoprotein EVI1 and the DNA methyltransferase Dnmt3 co-operate in binding and de novo methylation of target DNA. PLoS One 2011; 6: e20793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dickstein J, Senyuk V, Premanand K, Laricchia-Robbio L, Xu P, Cattaneo F et al. Methylation and silencing of miRNA-124 by EVI1 and self-renewal exhaustion of hematopoietic stem cells in murine myelodysplastic syndrome. Proc Natl Acad Sci USA 2010; 107: 9783–9788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 2010; 70: 6015–6025.

    Article  CAS  PubMed  Google Scholar 

  37. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 2011; 17: 500–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nanjundan M, Nakayama Y, Cheng KW, Lahad J, Liu J, Lu K et al. Amplification of MDS1/EVI1 and EVI1, located in the 3q26.2 amplicon, is associated with favorable patient prognosis in ovarian cancer. Cancer Res 2007; 67: 3074–3084.

    Article  CAS  PubMed  Google Scholar 

  39. Vazquez I, Maicas M, Cervera J, Agirre X, Marin-Bejar O, Marcotegui N et al. Down-regulation of EVI1 is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia. Haematologica 2011; 96: 1448–1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 2012; 142: 730–733 e739.

    Article  CAS  PubMed  Google Scholar 

  41. Logsdon CD, Ji B . Ras activity in acinar cells links chronic pancreatitis and pancreatic cancer. Clin Gastroenterol Hepatol 2009; 7: S40–S43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ji B, Tsou L, Wang H, Gaiser S, Chang DZ, Daniluk J et al. Ras activity levels control the development of pancreatic diseases. Gastroenterology 2009; 137: 1072–1082 1082 e1-6.

    Article  CAS  PubMed  Google Scholar 

  43. Kitago M, Ueda M, Aiura K, Suzuki K, Hoshimoto S, Takahashi S et al. Comparison of K-ras point mutation distributions in intraductal papillary-mucinous tumors and ductal adenocarcinoma of the pancreas. Int J Cancer 2004; 110: 177–182.

    Article  CAS  PubMed  Google Scholar 

  44. Jimenez RE, Warshaw AL, Z’Graggen K, Hartwig W, Taylor DZ, Compton CC et al. Sequential accumulation of K-ras mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy. Ann Surg 1999; 230: 501–509 discussion 509-511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matsuyama H, Suzuki HI, Nishimori H, Noguchi M, Yao T, Komatsu N et al. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood 2011; 118: 6881–6892.

    Article  CAS  PubMed  Google Scholar 

  46. Sentani K, Oue N, Tashiro T, Sakamoto N, Nishisaka T, Fukuhara Tea . Immunohistochemical staining of Reg IV and claudin-18 is useful in the diagnosis of gastrointestinal signet ring cell carcinoma. Am J Surg Pathol 2008; 32: 1182–1189.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Department of Pathology, University of Tokyo. This work was supported by the Industrial Technology Research Grant Program (2008) from the New Energy and Industrial Technology Development Organization (NEDO) of Japan (SI), the Grant-in-Aid for Scientific Research on Innovative Areas (SI),46 the Grant-in-Aid for Young Scientists (A),46 the GCOE Program for ‘Integrative Life Science Based on the Study of Biosignaling Mechanisms’ (HIS, KM), and for ‘Chemical Biology of the Diseases’ (MF and MK) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Cell Science Research Foundation (HIS, KM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Fukayama.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Suzuki, H., Shibahara, J. et al. EVI1 oncogene promotes KRAS pathway through suppression of microRNA-96 in pancreatic carcinogenesis. Oncogene 33, 2454–2463 (2014). https://doi.org/10.1038/onc.2013.204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.204

Keywords

This article is cited by

Search

Quick links