Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis

Abstract

Nanog is a transcription factor required for maintaining the pluripotency of embryonic stem cells, and is not expressed in most normal adult tissues. However, recent studies have indicated that Nanog is overexpressed in many types of human cancers, including breast cancer. To elucidate the physiological roles of Nanog in tumorigenesis, we developed an inducible Nanog transgenic mouse model, in which the expression of Nanog in adult tissues can be induced via LoxP/Cre-mediated deletion. Our findings indicate that overexpression of Nanog in the mammary gland is not sufficient to induce mammary tumor. However, when coexpressed with Wnt-1 in the mouse mammary gland, it promotes mammary tumorigenesis and metastasis. In this context, Nanog promotes the migration and invasion of breast cancer cells. Microarray analysis has shown that the ectopic expression of Nanog deregulates the expression of numerous genes associated with tumorigenesis and metastasis, such as the PDGFRα gene. Our findings demonstrate the involvement of Nanog in breast cancer metastasis, and provide the basis for the reported correlation between Nanog expression and poor prognosis of human breast cancer patients. As Nanog is not expressed in most adult tissues, these findings identify Nanog as a potential therapeutic target in the treatment of Nanog-expressing metastatic breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  Google Scholar 

  2. Polakis P . Wnt signaling in cancer. Cold Spring Harb Perspect Biol 2012; 4: doi:pii: a008052.

  3. Taipale J, Beachy PA . The Hedgehog and Wnt signalling pathways in cancer. Nature 2001; 411: 349–354.

    Article  CAS  Google Scholar 

  4. Kelleher FC, Fennelly D, Rafferty M . Common critical pathways in embryogenesis and cancer. Acta Oncol 2006; 45: 375–388.

    Article  CAS  Google Scholar 

  5. Sonoshita M, Aoki M, Fuwa H, Aoki K, Hosogi H, Sakai Y et al. Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 2011; 19: 125–137.

    Article  CAS  Google Scholar 

  6. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643–655.

    Article  CAS  Google Scholar 

  7. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631–642.

    Article  CAS  Google Scholar 

  8. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947–956.

    Article  CAS  Google Scholar 

  9. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38: 431–440.

    Article  CAS  Google Scholar 

  10. Hatano SY, Tada M, Kimura H, Yamaguchi S, Kono T, Nakano T et al. Pluripotential competence of cells associated with Nanog activity. Mech Dev 2005; 122: 67–79.

    Article  CAS  Google Scholar 

  11. Kohler EE, Cowan CE, Chatterjee I, Malik AB, Wary KK . NANOG induction of fetal liver kinase-1 (FLK1) transcription regulates endothelial cell proliferation and angiogenesis. Blood 2011; 117: 1761–1769.

    Article  CAS  Google Scholar 

  12. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95: 379–391.

    Article  CAS  Google Scholar 

  13. Pesce M, Gross MK, Scholer HR . In line with our ancestors: Oct-4 and the mammalian germ. Bioessays 1998; 20: 722–732.

    Article  CAS  Google Scholar 

  14. Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 1996; 122: 881–894.

    CAS  PubMed  Google Scholar 

  15. Almstrup K, Hoei-Hansen CE, Wirkner U, Blake J, Schwager C, Ansorge W et al. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling. Cancer Res 2004; 64: 4736–4743.

    Article  CAS  Google Scholar 

  16. Ezeh UI, Turek PJ, Reijo RA, Clark AT . Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 2005; 104: 2255–2265.

    Article  CAS  Google Scholar 

  17. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 2005; 7: 967–976.

    Article  CAS  Google Scholar 

  18. Hart AH, Hartley L, Parker K, Ibrahim M, Looijenga LH, Pauchnik M et al. The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 2005; 104: 2092–2098.

    Article  CAS  Google Scholar 

  19. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 2010; 70: 10433–10444.

    Article  CAS  Google Scholar 

  20. Siu MKY, Wong ESY, Kong DSH, Chan HY, Jiang L, Wong OGW et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene 2013; 32: 3500–3509.

    Article  CAS  Google Scholar 

  21. Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 1997; 25: 4323–4330.

    Article  CAS  Google Scholar 

  22. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988; 55: 619–625.

    Article  CAS  Google Scholar 

  23. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  Google Scholar 

  24. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012; 31: 1354–1365.

    Article  CAS  Google Scholar 

  25. Andrae J, Gallini R, Betsholtz C . Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008; 22: 1276–1312.

    Article  CAS  Google Scholar 

  26. Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 2006; 116: 1561–1570.

    Article  CAS  Google Scholar 

  27. Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, Ohno-Machado L et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 2011; 19: 372–386.

    Article  CAS  Google Scholar 

  28. Johnson DS, Mortazavi A, Myers RM, Wold B . Genome-wide mapping of in vivo protein-DNA interactions. Science 2007; 316: 1497–1502.

    Article  CAS  Google Scholar 

  29. Fields S . Molecular biology. Site-seeing by sequencing. Science 2007; 316: 1441–1442.

    Article  CAS  Google Scholar 

  30. Ouyang Z, Zhou Q, Wong WH . ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc Natl Acad Sci USA 2009; 106: 21521–21526.

    Article  CAS  Google Scholar 

  31. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008; 133: 1106–1117.

    Article  CAS  Google Scholar 

  32. Park SJ, Nakai K . A regression analysis of gene expression in ES cells reveals two gene classes that are significantly different in epigenetic patterns. BMC Bioinformatics 2011; 12 (Suppl 1): S50.

    Article  Google Scholar 

  33. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  34. Herman JG, Meadows GG . Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells. Int J Oncol 2007; 30: 1231–1238.

    CAS  PubMed  Google Scholar 

  35. Esselens C, Malapeira J, Colome N, Casal C, Rodriguez-Manzaneque JC, Canals F et al. The cleavage of semaphorin 3C induced by ADAMTS1 promotes cell migration. J Biol Chem 2010; 285: 2463–2473.

    Article  CAS  Google Scholar 

  36. Lee EK, Han GY, Park HW, Song YJ, Kim CW . Transgelin promotes migration and invasion of cancer stem cells. J Proteome Res 2010; 9: 5108–5117.

    Article  CAS  Google Scholar 

  37. Nagata T, Shimada Y, Sekine S, Hori R, Matsui K, Okumura T et al. Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer (doi: 10.1007/s12282-012-0357-y).

    Article  Google Scholar 

  38. Ishiguro T, Sato A, Ohata H, Sakai H, Nakagama H, Okamoto K . Differential expression of nanog1 and nanogp8 in colon cancer cells. Biochem Biophys Res Commun 2012; 418: 199–204.

    Article  CAS  Google Scholar 

  39. Ibrahim EE, Babaei-Jadidi R, Saadeddin A, Spencer-Dene B, Hossaini S, Abuzinadah M et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells 2012; 30: 2076–2087.

    Article  CAS  Google Scholar 

  40. Zhang J, Wang X, Chen B, Xiao Z, Li W, Lu Y et al. The human pluripotency gene NANOG/NANOGP8 is expressed in gastric cancer and associated with tumor development. Oncol Lett 2010; 1: 457–463.

    Article  CAS  Google Scholar 

  41. Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27: 993–1005.

    Article  CAS  Google Scholar 

  42. Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 2011; 30: 3833–3845.

    Article  CAS  Google Scholar 

  43. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  Google Scholar 

  44. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F et al. Slug and sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148: 1015–1028.

    Article  CAS  Google Scholar 

  45. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  Google Scholar 

  46. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008; 9: 405–414.

    Article  CAS  Google Scholar 

  47. Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 2008; 26: 364–371.

    Article  CAS  Google Scholar 

  48. Liu DP, Song H, Xu Y . A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 2010; 29: 949–956.

    Article  CAS  Google Scholar 

  49. Barbosa-Morais NL, Dunning MJ, Samarajiwa SA, Darot JF, Ritchie ME, Lynch AG et al. A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Res 2010; 38: e17.

    Article  Google Scholar 

  50. Du P, Kibbe WA, Lin SM . lumi: a pipeline for processing Illumina microarray. Bioinformatics 2008; 24: 1547–1548.

    Article  CAS  Google Scholar 

  51. Sharov AA, Dudekula DB, Ko MS . CisView: a browser and database of cis-regulatory modules predicted in the mouse genome. DNA Res 2006; 13: 123–134.

    Article  CAS  Google Scholar 

  52. Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 2009; 4: e6529.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y Li for providing the Wnt-1 transgenic mice. This work was supported by NIH grants (CA94254 and CA124834) to YX and by the Intramural Research Program of the National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Mazur, S., Lin, T. et al. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 33, 2655–2664 (2014). https://doi.org/10.1038/onc.2013.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.209

Keywords

This article is cited by

Search

Quick links