Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer

Abstract

The major goal of breast cancer prevention is to reduce the incidence of ductal carcinoma in situ (DCIS), an early stage of breast cancer. However, the biology behind DCIS formation is not well understood. It is suspected that cancer stem cells (CSCs) are already programmed in pre-malignant DCIS lesions and that these tumor-initiating cells may determine the phenotype of DCIS. MicroRNA (miRNA) profiling of paired DCIS tumors revealed that loss of miR-140 is a hallmark of DCIS lesions. Previously, we have found that miR-140 regulates CSCs in luminal subtype invasive ductal carcinoma. Here, we find that miR-140 has a critical role in regulating stem cell signaling in normal breast epithelium and in DCIS. miRNA profiling of normal mammary stem cells and cancer stem-like cells from DCIS tumors revealed that miR-140 is significantly downregulated in cancer stem-like cells compared with normal stem cells, linking miR-140 and dysregulated stem cell circuitry. Furthermore, we found that SOX9 and ALDH1, the most significantly activated stem-cell factors in DCIS stem-like cells, are direct targets of miR-140. Currently, targeted therapies (tamoxifen) are only able to reduce DCIS risk in patients with estrogen receptor α (ERα)-positive disease. We examined a model of ERα-negative/basal-like DCIS and found that restoration of miR-140 via a genetic approach or with the dietary compound sulforaphane decreased SOX9 and ALDH1, and reduced tumor growth in vivo. These results support that a miR-140/ALDH1/SOX9 axis is critical to basal CSC self-renewal and tumor formation in vivo, suggesting that the miR-140 pathway may be a promising target for preventative strategies in patients with basal-like DCIS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Leonard GD, Swain SM . Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst 2004; 96: 906–920.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . Cancer statistics, 2007. Cancer J Clin 2007; 57: 43–66.

    Article  Google Scholar 

  3. Li CI, Daling JR, Malone KE . Age-specific incidence rates of in situ breast carcinomas by histologic type, 1980 to 2001. Cancer Epidemiol Biomarkers Prev 2005; 14: 1008–1011.

    Article  PubMed  Google Scholar 

  4. Ernster VL, Ballard-Barbash R, Barlow WE, Zheng Y, Weaver DL, Cutter G et al. Detection of ductal carcinoma in situ in women undergoing screening mammography. J Natl Cancer Inst 2002; 94: 1546–1555.

    Article  PubMed  Google Scholar 

  5. Poller DN, Barth A, Slamon DJ, Silverstein MJ, Gierson ED, Coburn WJ et al. Prognostic classification of breast ductal carcinoma-in-situ. Lancet 1995; 345: 1154–1157.

    Article  PubMed  Google Scholar 

  6. Solin LJ, Yeh I, Kurtz J, Fourquet A, Recht A, Kurske R et al. Ductal carcinoma in situ (intraductal carcinoma) of the breast treated with breast-conserving surgery and definitive irradiation correlation of pathologic parameters with outcome of treatment. Cancer 1993; 71: 2532–2542.

    Article  CAS  PubMed  Google Scholar 

  7. Fisher B, Dignam J, Wolmark N, Mamounas E, Costantino J, Poller W et al. Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol 1998; 16: 441–452.

    Article  CAS  PubMed  Google Scholar 

  8. Fowble B, Hanlon A, Fein D, Hoffman J, Sigurdson E, Patchefsky A et al. Results of conservative surgery and radiation for mammographically detected ductal carcinoma in situ (DCIS). Int J Radiat Oncol Biol Phys 1997; 38: 949–957.

    Article  CAS  PubMed  Google Scholar 

  9. Lennington WJ, Jensen RA, Dalton LW, Page DL . Ductal carcinoma in situ of the breast. Heterogeneity of individual lesions. Cancer 1994; 73: 118–124.

    Article  CAS  PubMed  Google Scholar 

  10. Fisher B, Land S, Mamounas E, Dignam J, Fisher ER, Wolmark N . Prevention of invasive breast cancer in women with ductal carcinoma in situ: an update of the National Surgical Adjuvant Breast and Bowel Project experience. Semin Oncol 2001; 28: 400–418.

    Article  CAS  PubMed  Google Scholar 

  11. Houghton J . Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomized controlled trial. Lancet 2003; 362: 95–102.

    Article  PubMed  Google Scholar 

  12. Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J et al. Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 2010; 5: e10240.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Visvader JE, Lindeman GJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–768.

    Article  CAS  PubMed  Google Scholar 

  14. Takebe N, Ivy SP . Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res 2010; 16: 3106–3112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farnie G, Clarke R . Mammary stem cells and breast cancer–role of Notch signalling. Stem Cell Rev 2007; 3: 169–175.

    Article  CAS  PubMed  Google Scholar 

  16. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  17. Ruan K, Fang X, Ouyang G . MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 2009; 285: 116–126.

    Article  CAS  PubMed  Google Scholar 

  18. Vrba L, Garbe JC, Stampfer MR, Futscher BW . Epigenetic regulation of normal human mammary cell type-specific miRNAs. Genome Res 2011; 21: 2026–2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farazi TA, Horlings HM, ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 2011; 71: 4443–4453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Volinia S, Galasso M, Sana ME, Wise TF, Palantini J, Huebner K et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA 2012; 109: 3024–3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q . miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 2011; 286: 25992–26002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 2008; 214: 17–24.

    Article  CAS  PubMed  Google Scholar 

  23. de Souza RS, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor α in breast cancer cells. Cancer Res 2010; 70: 9175–9184.

    Article  Google Scholar 

  24. Yang J, Qin S, Yi C, Ma G, Zhu G, Zhou W et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett 2011; 585: 2992–2997.

    Article  CAS  PubMed  Google Scholar 

  25. Takai D, Jones PA . The CpG island searcher: a new WWW resource. In Silico Biol 2003; 3: 235–240.

    CAS  PubMed  Google Scholar 

  26. Livasy CA, Perou CM, Karaca G, Cowan DW, Maia D, Jackson S et al. Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum Pathol 2007; 38: 197–204.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou W, Jirstrom K, Johansson C, Amini R, Blomqvist C, Agbaje O et al. Long-term survival of women with basal-like ductal carcinoma in situ of the breast: a population-based cohort study. BMC Cancer 2010; 10: 653.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miller FR, Santner SJ, Tait L, Dawson PJ . MCF10DCIS.com Xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst 2000; 92: 1185a–1186a.

    Article  Google Scholar 

  29. Tait LR, Pauley RJ, Santner SJ, Heppner GH, Heng HH, Rak JW et al. Dynamic stromal-epithelial interactions during progression of MCF10DCIS.com xenografts. Int J Cancer 2007; 120: 2127–2134.

    Article  CAS  PubMed  Google Scholar 

  30. Scribner KC, Behbod F, Porter WW . Regulation of DCIS to invasive breast cancer progression by Singleminded-2s (SIM2s). Oncogene 2012; 32: 2631–2639.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E . Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 2006; 27: 811–819.

    Article  CAS  PubMed  Google Scholar 

  32. Hsu A, Wong C, Yu Z, Williams D, Dashwood R, Ho E . Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clin Epigenetics 2011; 3: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat M et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

  34. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu S, Clouthier S, Wicha M . Role of microRNAs in the regulation of breast cancer stem cells. J Mammary Gland Biol Neoplasia 2012; 17: 15–21.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ricardo S, Vieira AF, Gerhard R, Leitao D, Pinto R, Cameselle-Teijeiro J et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 2011; 64: 937–946.

    Article  PubMed  Google Scholar 

  38. de Beça FF, Caetano P, Gerhard R, Alvarenga CA, Gomes M, Paraedes J et al. Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol 2013; 66: 187–191.

    Article  PubMed  Google Scholar 

  39. Guo W, Keckesova Z, Donaher J, Shibue T, Tischler V, Reinhardt F et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148: 1015–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ginestier C, Hur MH, Charafe-Jaufret E, Monville F, Dutcher J, Brown M et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kao J, Salari K, Bocanegra M, Choi Y, Girard L, Gandhi J et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 2009; 4: e6146.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsai H, Li H, Van Neste L, Cai Y, Robert C, Rassool F et al. Transient low doses of dna-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 2012; 21: 430–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  46. Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L et al. Loss of Let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 2012; 7: e33729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J et al. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer 2012; 130: 2044–2053.

    Article  CAS  PubMed  Google Scholar 

  48. Yamashita S, Miyaki S, Kato Y, Yokoyama S, Sato T, Barrionuevo F et al. L-Sox5 and Sox6 enhance chondrogenic miR-140 expression by strengthening dimeric Sox9 activity. J Biol Chem 2012; 287: 22206–22215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Maryland Stem Cell Fund, FAMRI, ACS and NCI R01 (QZ), and NCI T32 training (GE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Zhou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Yao, Y., Eades, G. et al. Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene 33, 2589–2600 (2014). https://doi.org/10.1038/onc.2013.226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.226

Keywords

This article is cited by

Search

Quick links