Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53 deficiency enhances mitotic arrest and slippage induced by pharmacological inhibition of Aurora kinases

Abstract

A number of small-molecule inhibitors of Aurora kinases have been developed and are undergoing clinical trials for anti-cancer therapies. Different Aurora kinases, however, behave as very different targets: while inhibition of Aurora A (AURKA) induces a delay in mitotic exit, inhibition of Aurora B (AURKB) triggers mitotic slippage. Furthermore, while it is evident that p53 is regulated by Aurora kinase-dependent phosphorylation, how p53 may in turn regulate Aurora kinases remains mysterious. To address these issues, isogenic p53-containing and -negative cells were exposed to classic inhibitors that target both AURKA and AURKB (Alisertib and ZM447439), as well as to new generation of inhibitors that target AURKA (MK-5108), AURKB (Barasertib) individually. The fate of individual cells was then tracked with time-lapse microscopy. Remarkably, loss of p53, either by gene disruption or small interfering RNA-mediated depletion, sensitized cells to inhibition of both AURKA and AURKB, promoting mitotic arrest and slippage respectively. As the p53-dependent post-mitotic checkpoint is also important for preventing genome reduplication after mitotic slippage, these studies indicate that the loss of p53 in cancer cells represents a major opportunity for anti-cancer drugs targeting the Aurora kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ma HT, Poon RY . How protein kinases co-ordinate mitosis in animal cells. Biochem J 2011; 435: 17–31.

    Article  CAS  PubMed  Google Scholar 

  2. Karthigeyan D, Prasad SB, Shandilya J, Agrawal S, Kundu TK . Biology of Aurora A kinase: implications in cancer manifestation and therapy. Med Res Rev 2010; 31: 757–793.

    PubMed  Google Scholar 

  3. Ruchaud S, Carmena M, Earnshaw WC . Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 2007; 8: 798–812.

    Article  CAS  PubMed  Google Scholar 

  4. Kimura M, Matsuda Y, Yoshioka T, Okano Y . Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 1999; 274: 7334–7340.

    Article  CAS  PubMed  Google Scholar 

  5. Scutt PJ, Chu ML, Sloane DA, Cherry M, Bignell CR, Williams DH et al. Discovery and exploitation of inhibitor-resistant aurora and polo kinase mutants for the analysis of mitotic networks. J Biol Chem 2009; 284: 15880–15893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yasui Y, Urano T, Kawajiri A, Nagata K, Tatsuka M, Saya H et al. Autophosphorylation of a newly identified site of Aurora-B is indispensable for cytokinesis. J Biol Chem 2004; 279: 12997–13003.

    Article  CAS  PubMed  Google Scholar 

  7. Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PNJ, Gandara DR . Aurora kinases as anticancer drug targets. Clin Cancer Res 2008; 14: 1639–1648.

    Article  CAS  PubMed  Google Scholar 

  8. Green MR, Woolery JE, Mahadevan D . Update on Aurora kinase targeted therapeutics in oncology. Expert Opin Drug Discov 2011; 6: 291–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keen N, Taylor S . Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004; 4: 927–936.

    Article  CAS  PubMed  Google Scholar 

  10. Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 2004; 279: 52175–52182.

    Article  CAS  PubMed  Google Scholar 

  11. Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2004; 36: 55–62.

    Article  CAS  PubMed  Google Scholar 

  12. Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM et al. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res 2011; 17: 7614–7624.

    Article  CAS  PubMed  Google Scholar 

  13. Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 2003; 161: 267–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang J, Ikezoe T, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y et al. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 2007; 110: 2034–2040.

    Article  CAS  PubMed  Google Scholar 

  15. Shimomura T, Hasako S, Nakatsuru Y, Mita T, Ichikawa K, Kodera T et al. MK-5108, a highly selective Aurora-A kinase inhibitor, shows antitumor activity alone and in combination with docetaxel. Mol Cancer Ther 2010; 9: 157–166.

    Article  CAS  PubMed  Google Scholar 

  16. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 2004; 10: 262–267.

    Article  CAS  PubMed  Google Scholar 

  17. Girdler F, Gascoigne KE, Eyers PA, Hartmuth S, Crafter C, Foote KM et al. Validating Aurora B as an anti-cancer drug target. J Cell Sci 2006; 119: 3664–3675.

    Article  CAS  PubMed  Google Scholar 

  18. Hegarat N, Smith E, Nayak G, Takeda S, Eyers PA, Hochegger H . Aurora A and Aurora B jointly coordinate chromosome segregation and anaphase microtubule dynamics. J Cell Biol 2011; 195: 1103–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andreassen PR, Lohez OD, Lacroix FB, Margolis RL . Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 2001; 12: 1315–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D . Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005; 437: 1043–1047.

    Article  CAS  PubMed  Google Scholar 

  21. Uetake Y, Sluder G . Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a "tetraploidy checkpoint". J Cell Biol 2004; 165: 609–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong C, Stearns T . Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 2005; 6: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Storchova Z, Kuffer C . The consequences of tetraploidy and aneuploidy. J Cell Sci 2008; 121: 3859–3866.

    Article  CAS  PubMed  Google Scholar 

  24. Dar AA, Belkhiri A, Ecsedy J, Zaika A, El-Rifai W . Aurora kinase A inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer Res 2008; 68: 8998–9004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shao S, Wang Y, Jin S, Song Y, Wang X, Fan W et al. Gadd45a interacts with aurora-A and inhibits its kinase activity. J Biol Chem 2006; 281: 28943–28950.

    Article  CAS  PubMed  Google Scholar 

  26. Tao Y, Zhang P, Girdler F, Frascogna V, Castedo M, Bourhis J et al. Enhancement of radiation response in p53-deficient cancer cells by the Aurora-B kinase inhibitor AZD1152. Oncogene 2008; 27: 3244–3255.

    Article  CAS  PubMed  Google Scholar 

  27. Gizatullin F, Yao Y, Kung V, Harding MW, Loda M, Shapiro GI . The Aurora kinase inhibitor VX-680 induces endoreduplication and apoptosis preferentially in cells with compromised p53-dependent postmitotic checkpoint function. Cancer Res 2006; 66: 7668–7677.

    Article  CAS  PubMed  Google Scholar 

  28. Curry J, Angove H, Fazal L, Lyons J, Reule M, Thompson N et al. Aurora B kinase inhibition in mitosis: strategies for optimising the use of aurora kinase inhibitors such as AT9283. Cell Cycle 2009; 8: 1921–1929.

    Article  CAS  PubMed  Google Scholar 

  29. Yam CH, Siu WY, Lau A, Poon RY . Degradation of cyclin A does not require its phosphorylation by CDC2 and cyclin-dependent kinase 2. J Biol Chem 2000; 275: 3158–3167.

    Article  CAS  PubMed  Google Scholar 

  30. Chan YW, Ma HT, Wong W, Ho CC, On KF, Poon RY . CDK1 inhibitors antagonize the immediate apoptosis triggered by spindle disruption but promote apoptosis following the subsequent rereplication and abnormal mitosis. Cell Cycle 2008; 7: 1449–1461.

    Article  CAS  PubMed  Google Scholar 

  31. On KF, Chen Y, Ma HT, Chow JP, Poon RY . Determinants of mitotic catastrophe on abrogation of the G2 DNA damage checkpoint by UCN-01. Mol Cancer Ther 2011; 10: 784–794.

    Article  CAS  PubMed  Google Scholar 

  32. Ma HT, Poon RY . Synchronization of HeLa cells. Methods Mol Biol 2011; 761: 151–161.

    Article  CAS  PubMed  Google Scholar 

  33. Poon RY, Toyoshima H, Hunter T . Redistribution of the CDK inhibitor p27 between different cyclin.CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol Biol Cell 1995; 6: 1197–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Siu WY, Arooz T, Poon RY . Differential responses of proliferating versus quiescent cells to adriamycin. Exp Cell Res 1999; 250: 131–141.

    Article  CAS  PubMed  Google Scholar 

  35. Chan YW, On KF, Chan WM, Wong W, Siu HO, Hau PM et al. The kinetics of p53 activation versus cyclin E accumulation underlies the relationship between the spindle-assembly checkpoint and the postmitotic checkpoint. J Biol Chem 2008; 283: 15716–15723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siu WY, Lau A, Arooz T, Chow JP, Ho HT, Poon RY . Topoisomerase poisons differentially activate DNA damage checkpoints through ataxia-telangiectasia mutated-dependent and -independent mechanisms. Mol Cancer Ther 2004; 3: 621–632.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many thanks are due to Michelle Chen, Nelson Lee and Kenji Nishiura for technical assistance. This work was supported in part by the Research Grants Council grant HKU7/CRG/09 to RYCP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Y C Poon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marxer, M., Ma, H., Man, W. et al. p53 deficiency enhances mitotic arrest and slippage induced by pharmacological inhibition of Aurora kinases. Oncogene 33, 3550–3560 (2014). https://doi.org/10.1038/onc.2013.325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.325

Keywords

This article is cited by

Search

Quick links