Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Predictive biomarkers for cancer therapy with PARP inhibitors

Abstract

Poly(ADP-ribose) polymerase (PARP) inhibitors have raised high expectations for the treatment of multiple malignancies. PARP inhibitors, which can be used as monotherapies or in combination with DNA-damaging agents, are particularly efficient against tumors with defects in DNA repair mechanisms, in particular the homologous recombination pathway, for instance due to BRCA mutations. Thus, deficient DNA repair provides a framework for the success of PARP inhibitors in medical oncology. Here, we review encouraging results obtained in recent clinical trials investigating the safety and efficacy of PARP inhibitors as anticancer agents. We discuss emerging mechanisms of regulation of homologous recombination and how inhibition of DNA repair might be used in cancer therapy. We surmise that the identification of patients that are likely to benefit from PARP inhibition will improve the clinical use of PARP inhibitors in a defined target population. Thus, we will place special emphasis on biomarker discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

ART:

ADP-ribosyl transferases

ATM:

ataxia-telangiectasia mutated

BER:

base excision repair

bid:

twice a day

CBR:

clinical benefit rate

CDDP:

cisplatin

CDK1:

cyclin-dependent kinase 1

DDR:

DNA damage response

DiOC6(3):

3,3′-dihexyloxacarbocyanine iodide

DLT:

dose limiting toxicity

DNA-PK:

DNA-dependent protein kinase

DNA-PKcs:

catalytic subunit of DNA-dependent protein kinase

DR:

direct repair

DSB:

double-strand break

DSBR:

double-strand break repair

EGBFr:

epidermal growth factor receptor

EOC:

epithelial ovarian cancer

GI:

gastro-intestinal

HDAC:

histone deacetylase

HzR:

hazard ratio

HR:

homologous recombination

HRD:

homologous recombination deficiency

HRR:

homologous recombinational repair

HSP90:

heat-shock protein of 90 KDa

LOH:

loss of heterozygosity

MAPK:

mitogen-activated protein kinase

MGMT:

O6-methylguanine DNA methyltransferase

MMR:

mismatch repair

MTD:

maximum tolerated dose

NAD:

nicotinamide adenine dinucleotide

NER:

nucleotide excision repair

NHEJ:

non-homologous end joining

NSCLC:

non-small-cell lung carcinoma

ORR:

overall response rate

OS:

overall survival

PAR:

poly-(ADP-ribose)

PARP:

poly-(ADP-ribose) polymerase

PARPBP:

PARP1-binding protein

PARP I:

PARP inhibitor

PLD:

pegylated liposomal doxorubicin

PD:

progressive disease

PFI:

platinum-free interval

PFS:

progression-free survival

PI:

propidium iodide

PI3K:

phosphoinositide 3-kinase

PS:

performance status

PSA:

prostate-specific antigen

PTEN:

phosphatase and tensin homolog

RECIST:

response evaluation criteria in solid tumors

RNAi:

RNA interference

SNP:

single-nucleotide polymorphism

SSB:

single-strand break

SSBR:

single-strand break repair

TMZ:

temozolomide

TNBC:

triple-negative breast cancer

XRCC1:

X-ray repair cross-complementing 1

References

  1. Chambon P, Weill JD, Mandel P . Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 1963; 11: 39–43.

    CAS  PubMed  Google Scholar 

  2. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG . PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010; 10: 293–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Krishnakumar R, Kraus WL . The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 2010; 39: 8–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Herceg Z, Wang ZQ . Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 1999; 19: 5124–5133.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19: 107–120.

    CAS  PubMed  Google Scholar 

  6. Hassa PO, Haenni SS, Elser M, Hottiger MO . Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006; 70: 789–829.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Langelier MF, Planck JL, Roy S, Pascal JM . Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 2012; 336: 728–732.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G et al. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 2013; 20: 508–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F . Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 2010; 35: 208–219.

    CAS  PubMed  Google Scholar 

  10. Durkacz BW, Omidiji O, Gray DA, Shall S . (ADP-ribose)n participates in DNA excision repair. Nature 1980; 283: 593–596.

    CAS  PubMed  Google Scholar 

  11. Dantzer F, Schreiber V, Niedergang C, Trucco C, Flatter E, De La Rubia G et al. Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 1999; 81: 69–75.

    CAS  PubMed  Google Scholar 

  12. Shall S, de Murcia G . Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res 2000; 460: 1–15.

    CAS  PubMed  Google Scholar 

  13. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 1997; 11: 2347–2358.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsutsumi M, Masutani M, Nozaki T, Kusuoka O, Tsujiuchi T, Nakagama H et al. Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis 2001; 22: 1–3.

    CAS  PubMed  Google Scholar 

  15. Menissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 2003; 22: 2255–2263.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434: 917–921.

    Article  CAS  PubMed  Google Scholar 

  17. D'Amours D, Desnoyers S, D’Silva I, Poirier GG . Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999; 342 (Pt 2): 249–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. De Vos M, Schreiber V, Dantzer F . The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 2012; 84: 137–146.

    CAS  PubMed  Google Scholar 

  19. Luo X, Kraus WL . On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 2012; 26: 417–432.

    PubMed  PubMed Central  Google Scholar 

  20. Campalans A, Kortulewski T, Amouroux R, Menoni H, Vermeulen W, Radicella JP . Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Res 2013; 41: 3115–3129.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Strom CE, Johansson F, Uhlen M, Szigyarto CA, Erixon K, Helleday T . Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res 2011; 39: 3166–3175.

    PubMed  Google Scholar 

  22. Noren Hooten N, Kompaniez K, Barnes J, Lohani A, Evans MK . Poly(ADP-ribose) polymerase 1 (PARP-1) binds to 8-oxoguanine-DNA glycosylase (OGG1). J Biol Chem 2011; 286: 44679–44690.

    PubMed  PubMed Central  Google Scholar 

  23. Vodenicharov MD, Ghodgaonkar MM, Halappanavar SS, Shah RG, Shah GM . Mechanism of early biphasic activation of poly(ADP-ribose) polymerase-1 in response to ultraviolet B radiation. J Cell Sci 2005; 118 (Pt 3): 589–599.

    CAS  PubMed  Google Scholar 

  24. Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 2012; 199: 235–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Robu M, Shah RG, Petitclerc N, Brind'Amour J, Kandan-Kulangara F, Shah GM . Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proc Natil Acad Sci USA 2013; 110: 1658–1663.

    CAS  Google Scholar 

  26. King BS, Cooper KL, Liu KJ, Hudson LG . Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J Biol Chem 2012; 287: 39824–39833.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 2009; 28: 2601–2615.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang YG, Cortes U, Patnaik S, Jasin M, Wang ZQ . Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 2004; 23: 3872–3882.

    CAS  PubMed  Google Scholar 

  29. Ying S, Hamdy FC, Helleday T . Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res 2012; 72: 2814–2821.

    CAS  PubMed  Google Scholar 

  30. Hochegger H, Dejsuphong D, Fukushima T, Morrison C, Sonoda E, Schreiber V et al. Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J 2006; 25: 1305–1314.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sugimura K, Takebayashi S, Taguchi H, Takeda S, Okumura K . PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J Cell Biol 2008; 183: 1203–1212.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Couto CA, Wang HY, Green JC, Kiely R, Siddaway R, Borer C et al. PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks. J Cell Biol 2011; 194: 367–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 2006; 34: 6170–6182.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mansour WY, Rhein T, Dahm-Daphi J . The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 2010; 38: 6065–6077.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH . Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res 2012; 40: 4168–4177.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rulten SL, Fisher AE, Robert I, Zuma MC, Rouleau M, Ju L et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell 2011; 41: 33–45.

    CAS  PubMed  Google Scholar 

  37. Helleday T . The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 2011; 5: 387–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel AG, Sarkaria JN, Kaufmann SH . Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA 2011; 108: 3406–3411.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ha HC, Snyder SH . Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 1999; 96: 13978–13982.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB . Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004; 18: 1272–1282.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ethier C, Tardif M, Arul L, Poirier GG . PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent. PLoS One 2012; 7: e47978.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 2012; 19: 2003–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahaboglu A, Tanimoto N, Kaur J, Sancho-Pelluz J, Huber G, Fahl E et al. PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function. PLoS One 2010; 5: e15495.

    PubMed  PubMed Central  Google Scholar 

  44. Virag L, Robaszkiewicz A, Vargas JM, Javier Oliver F . Poly(ADP-ribose) signaling in cell death. Mol Aspects Med S0098-2997: 00008-3.

  45. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002; 297: 259–263.

    CAS  PubMed  Google Scholar 

  46. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natil Acad Sci USA 2006; 103: 18314–18319.

    CAS  Google Scholar 

  47. Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Science Signal 2011; 4: ra20.

    Google Scholar 

  48. Kashima L, Idogawa M, Mita H, Shitashige M, Yamada T, Ogi K et al. CHFR protein regulates mitotic checkpoint by targeting PARP-1 protein for ubiquitination and degradation. J Biol Chem 2012; 287: 12975–12984.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G et al. PARP-1 is involved in autophagy induced by DNA damage. Autophagy 2009; 5: 61–74.

    CAS  PubMed  Google Scholar 

  50. Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH . Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol 2012; 83: 747–757.

    CAS  PubMed  Google Scholar 

  51. Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodriguez MI et al. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res 2012; 22: 1181–1198.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang Q, Shen HM . To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy 2009; 5: 273–276.

    CAS  PubMed  Google Scholar 

  53. Huang Q, Wu YT, Tan HL, Ong CN, Shen HM . A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ 2009; 16: 264–277.

    CAS  PubMed  Google Scholar 

  54. Zhou J, Ng S, Huang Q, Wu YT, Li Z, Yao SQ et al. AMPK mediates a pro-survival autophagy downstream of PARP-1 activation in response to DNA alkylating agents. FEBS Lett 2013; 587: 170–177.

    CAS  PubMed  Google Scholar 

  55. Schultz N, Lopez E, Saleh-Gohari N, Helleday T . Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res 2003; 31: 4959–4964.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. d'Adda di Fagagna F, Hande MP, Tong WM, Lansdorp PM, Wang ZQ, Jackson SP . Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet 1999; 23: 76–80.

    CAS  PubMed  Google Scholar 

  57. Samper E, Goytisolo FA, Menissier-de Murcia J, Gonzalez-Suarez E, Cigudosa JC, de Murcia G et al. Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability. J Cell Biol 2001; 154: 49–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Morrison C, Smith GC, Stingl L, Jackson SP, Wagner EF, Wang ZQ . Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis. Nat Genet 1997; 17: 479–482.

    CAS  PubMed  Google Scholar 

  59. Michels J, Vitale I, Galluzzi L, Adam J, Olaussen KA, Kepp O et al. Cisplatin Resistance Associated with PARP Hyperactivation. Cancer Res 2013; 73: 2271–2280.

    CAS  PubMed  Google Scholar 

  60. Ba X, Garg NJ . Signaling mechanism of poly(ADP-ribose) polymerase-1 (PARP-1) in inflammatory diseases. Am J Pathol 2011; 178: 946–955.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Strosznajder RP, Czubowicz K, Jesko H, Strosznajder JB . Poly(ADP-ribose) metabolism in brain and its role in ischemia pathology. Mol Neurobiol 2010; 41: 187–196.

    CAS  PubMed  Google Scholar 

  62. Rosado MM, Bennici E, Novelli F, Pioli C . Beyond dna repair,the immunological role of parp-1 and its siblings. Immunology 2013; 139: 428–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Szabo C . Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacol Res 2005; 52: 60–71.

    CAS  PubMed  Google Scholar 

  64. Pacher P, Szabo C . Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovas Drug Rev 2007; 25: 235–260.

    CAS  Google Scholar 

  65. Moroni F, Cozzi A, Chiarugi A, Formentini L, Camaioni E, Pellegrini-Giampietro DE et al. Long-lasting neuroprotection and neurological improvement in stroke models with new, potent and brain permeable inhibitors of poly(ADP-ribose) polymerase. Br J Pharmacol 2012; 165: 1487–1500.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bai P, Canto C . The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab 2012; 16: 290–295.

    CAS  PubMed  Google Scholar 

  67. Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP . Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer's disease. Mol Neurobiol 2012; 46: 78–84.

    CAS  PubMed  Google Scholar 

  68. Abeti R, Abramov AY, Duchen MR . Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 2011; 134 (Pt 6): 1658–1672.

    PubMed  Google Scholar 

  69. Russo AL, Kwon HC, Burgan WE, Carter D, Beam K, Weizheng X et al. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res 2009; 15: 607–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dungey FA, Loser DA, Chalmers AJ . Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys 2008; 72: 1188–1197.

    CAS  PubMed  Google Scholar 

  71. Senra JM, Telfer BA, Cherry KE, McCrudden CM, Hirst DG, O’Connor MJ et al. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft. Mol Cancer Ther 2011; 10: 1949–1958.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Taverna P, Catapano CV, Citti L, Bonfanti M, D'Incalci M . Influence of O6-methylguanine on DNA damage and cytotoxicity of temozolomide in L1210 mouse leukemia sensitive and resistant to chloroethylnitrosoureas. Anti-Cancer Drugs 1992; 3: 401–405.

    CAS  PubMed  Google Scholar 

  73. Sedgwick B . Repairing DNA-methylation damage. Nat Rev Mol Cell Biol 2004; 5: 148–157.

    CAS  PubMed  Google Scholar 

  74. Pan Q, Yang XJ, Wang HM, Dong XT, Wang W, Li Y et al. Chemoresistance to temozolomide in human glioma cell line U251 is associated with increased activity of O6-methylguanine-DNA methyltransferase and can be overcome by metronomic temozolomide regimen. Cell Biochem Biophys 2012; 62: 185–191.

    CAS  PubMed  Google Scholar 

  75. Taverna P, Liu L, Hanson AJ, Monks A, Gerson SL . Characterization of MLH1 and MSH2 DNA mismatch repair proteins in cell lines of the NCI anticancer drug screen. Cancer Chemother Pharmacol 2000; 46: 507–516.

    CAS  PubMed  Google Scholar 

  76. Tentori L, Turriziani M, Franco D, Serafino A, Levati L, Roy R et al. Treatment with temozolomide and poly(ADP-ribose) polymerase inhibitors induces early apoptosis and increases base excision repair gene transcripts in leukemic cells resistant to triazene compounds. Leukemia 1999; 13: 901–909.

    CAS  PubMed  Google Scholar 

  77. Daniel RA, Rozanska AL, Thomas HD, Mulligan EA, Drew Y, Castelbuono DJ et al. Inhibition of poly(ADP-ribose) polymerase-1 enhances temozolomide and topotecan activity against childhood neuroblastoma. Clin Cancer Res 2009; 15: 1241–1249.

    CAS  PubMed  Google Scholar 

  78. Tentori L, Muzi A, Dorio AS, Scarsella M, Leonetti C, Shah GM et al. Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) activity in PARP-1 silenced tumour cells increases chemosensitivity to temozolomide and to a N3-adenine selective methylating agent. Curr Cancer Drug Targets 2010; 10: 368–383.

    CAS  PubMed  Google Scholar 

  79. Palma JP, Wang YC, Rodriguez LE, Montgomery D, Ellis PA, Bukofzer G et al. ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors. Clin Cancer Res 2009; 15: 7277–7290.

    CAS  PubMed  Google Scholar 

  80. Horton TM, Jenkins G, Pati D, Zhang L, Dolan ME, Ribes-Zamora A et al. Poly(ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and O6-methylguanine-DNA methyltransferase activity. Mol Cancer Ther 2009; 8: 2232–2242.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang SH, Xiong M, Chen XP, Xiao ZY, Zhao YF, Huang ZY . PJ34, an inhibitor of PARP-1, suppresses cell growth and enhances the suppressive effects of cisplatin in liver cancer cells. Oncol Rep 2008; 20: 567–572.

    CAS  PubMed  Google Scholar 

  82. Gambi N, Tramontano F, Quesada P . Poly(ADPR)polymerase inhibition and apoptosis induction in cDDP-treated human carcinoma cell lines. Biochem Pharmacol 2008; 75: 2356–2363.

    CAS  PubMed  Google Scholar 

  83. Cavallo F, Graziani G, Antinozzi C, Feldman DR, Houldsworth J, Bosl GJ et al. Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to Cisplatin and poly (adp-ribose) polymerase inhibition. PLoS One 2012; 7: e51563.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Michels J, Vitale I, Senovilla L, Enot DP, Garcia P, Lissa D et al. Synergistic interaction between cisplatin and PARP inhibitors in non-small cell lung cancer. Cell Cycle 2013; 12: 877–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Drew Y, Mulligan EA, Vong WT, Thomas HD, Kahn S, Kyle S et al. Therapeutic potential of poly(ADP-ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or BRCA2. J Natl Cancer Inst 2011; 103: 334–346.

    CAS  PubMed  Google Scholar 

  86. Wang JC . Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 2002; 3: 430–440.

    CAS  PubMed  Google Scholar 

  87. Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP . Mechanism of action of camptothecin. Ann N Y Acad Sci 2000; 922: 1–10.

    CAS  PubMed  Google Scholar 

  88. Park SY, Cheng YC . Poly(ADP-ribose) polymerase-1 could facilitate the religation of topoisomerase I-linked DNA inhibited by camptothecin. Cancer Res 2005; 65: 3894–3902.

    CAS  PubMed  Google Scholar 

  89. Thomas HD, Calabrese CR, Batey MA, Canan S, Hostomsky Z, Kyle S et al. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther 2007; 6: 945–956.

    CAS  PubMed  Google Scholar 

  90. Delaney CA, Wang LZ, Kyle S, White AW, Calvert AH, Curtin NJ et al. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 2000; 6: 2860–2867.

    CAS  PubMed  Google Scholar 

  91. Magan N, Isaacs RJ, Stowell KM . Treatment with the PARP-inhibitor PJ34 causes enhanced doxorubicin-mediated cell death in HeLa cells. Anti-cancer Drugs 2012; 23: 627–637.

    CAS  PubMed  Google Scholar 

  92. Munoz-Gamez JA, Quiles-Perez R, Ruiz-Extremera A, Martin-Alvarez AB, Sanjuan-Nunez L, Carazo A et al. Inhibition of poly (ADP-ribose) polymerase-1 enhances doxorubicin activity against liver cancer cells. Cancer Lett 2011; 301: 47–56.

    CAS  PubMed  Google Scholar 

  93. Wesierska-Gadek J, Zulehner N, Ferk F, Skladanowski A, Komina O, Maurer M . PARP inhibition potentiates the cytotoxic activity of C-1305, a selective inhibitor of topoisomerase II, in human BRCA1-positive breast cancer cells. Biochem Pharmacol 2012; 84: 1318–1331.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaelin WG Jr. . The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 2005; 5: 689–698.

    CAS  PubMed  Google Scholar 

  95. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361: 123–134.

    CAS  PubMed  Google Scholar 

  96. Gottipati P, Vischioni B, Schultz N, Solomons J, Bryant HE, Djureinovic T et al. Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells. Cancer Res 2010; 70: 5389–5398.

    CAS  PubMed  Google Scholar 

  97. Zaremba T, Ketzer P, Cole M, Coulthard S, Plummer ER, Curtin NJ . Poly(ADP-ribose) polymerase-1 polymorphisms, expression and activity in selected human tumour cell lines. Br J Cancer 2009; 101: 256–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G . Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008; 320: 1655–1658.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, Ducommun B . CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 2005; 4: 1233–1238.

    CAS  PubMed  Google Scholar 

  100. Yang G, Chang B, Yang F, Guo X, Cai KQ, Xiao XS et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res 2010; 16: 3171–3181.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sourisseau T, Maniotis D, McCarthy A, Tang C, Lord CJ, Ashworth A et al. Aurora-A expressing tumour cells are deficient for homology-directed DNA double strand-break repair and sensitive to PARP inhibition. EMBO Mol Med 2010; 2: 130–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Salmena L, Carracedo A, Pandolfi PP . Tenets of PTEN tumor suppression. Cell 2008; 133: 403–414.

    CAS  PubMed  Google Scholar 

  103. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007; 128: 157–170.

    CAS  PubMed  Google Scholar 

  104. Kumar A, Fernandez-Capetillo O, Carrera AC . Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci USA 2010; 107: 7491–7496.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Fraser M, Zhao H, Luoto KR, Lundin C, Coackley C, Chan N et al. PTEN deletion in prostate cancer cells does not associate with loss of RAD51 function: implications for radiotherapy and chemotherapy. Clin Cancer Res 2012; 18: 1015–1027.

    CAS  PubMed  Google Scholar 

  106. Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 2009; 1: 315–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. McEllin B, Camacho CV, Mukherjee B, Hahm B, Tomimatsu N, Bachoo RM et al. PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res 2010; 70: 5457–5464.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Dedes KJ, Wetterskog D, Mendes-Pereira AM, Natrajan R, Lambros MB, Geyer FC et al. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Translation Med 2010; 2: 53ra75.

    Google Scholar 

  109. Fraser M, Harding SM, Zhao H, Coackley C, Durocher D, Bristow RG . MRE11 promotes AKT phosphorylation in direct response to DNA double-strand breaks. Cell Cycle 2011; 10: 2218–2232.

    CAS  PubMed  Google Scholar 

  110. Haince JF, McDonald D, Rodrigue A, Dery U, Masson JY, Hendzel MJ et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem 2008; 283: 1197–1208.

    CAS  PubMed  Google Scholar 

  111. Graeser M, McCarthy A, Lord CJ, Savage K, Hills M, Salter J et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 2010; 16: 6159–6168.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C et al. Targeting XRCC1 Deficiency in Breast Cancer for Personalized Therapy. Cancer Res 2013; 73: 1621–1634.

    CAS  PubMed  Google Scholar 

  113. Sakata K, Someya M, Matsumoto Y, Tauchi H, Kai M, Toyota M et al. Gimeracil, an inhibitor of dihydropyrimidine dehydrogenase, inhibits the early step in homologous recombination. Cancer Sci 2011; 102: 1712–1716.

    CAS  PubMed  Google Scholar 

  114. Menisser-de Murcia J, Mark M, Wendling O, Wynshaw-Boris A, de Murcia G . Early embryonic lethality in PARP-1 Atm double-mutant mice suggests a functional synergy in cell proliferation during development. Mol Cell Biol 2001; 21: 1828–1832.

    CAS  PubMed  Google Scholar 

  115. Lavin MF . Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008; 9: 759–769.

    CAS  PubMed  Google Scholar 

  116. Williamson CT, Muzik H, Turhan AG, Zamo A, O’Connor MJ, Bebb DG et al. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther 2010; 9: 347–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 2010; 116: 4578–4587.

    CAS  PubMed  Google Scholar 

  118. Schaffner C, Idler I, Stilgenbauer S, Dohner H, Lichter P . Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci USA 2000; 97: 2773–2778.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Veuger SJ, Curtin NJ, Richardson CJ, Smith GC, Durkacz BW . Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 2003; 63: 6008–6015.

    CAS  PubMed  Google Scholar 

  120. Veuger SJ, Curtin NJ, Smith GC, Durkacz BW . Effects of novel inhibitors of poly(ADP-ribose) polymerase-1 and the DNA-dependent protein kinase on enzyme activities and DNA repair. Oncogene 2004; 23: 7322–7329.

    CAS  PubMed  Google Scholar 

  121. Bryant HE, Helleday T . Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 2006; 34: 1685–1691.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Yuan ZM, Huang Y, Ishiko T, Nakada S, Utsugisawa T, Kharbanda S et al. Regulation of Rad51 function by c-Abl in response to DNA damage. J Biol Chem 1998; 273: 3799–3802.

    CAS  PubMed  Google Scholar 

  123. Cousineau I, Belmaaza A . EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases. Mol Genet Genomics 2011; 285: 325–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004; 364: 1127–1134.

    CAS  PubMed  Google Scholar 

  125. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    CAS  PubMed  Google Scholar 

  126. Choudhury A, Zhao H, Jalali F, Al Rashid S, Ran J, Supiot S et al. Targeting homologous recombination using imatinib results in enhanced tumor cell chemosensitivity and radiosensitivity. Mol Cancer Ther 2009; 8: 203–213.

    CAS  PubMed  Google Scholar 

  127. Johnson N, Cai D, Kennedy RD, Pathania S, Arora M, Li YC et al. Cdk1 participates in BRCA1-dependent S phase checkpoint control in response to DNA damage. Mol Cell 2009; 35: 327–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Johnson N, Li YC, Walton ZE, Cheng KA, Li D, Rodig SJ et al. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat Med 2011; 17: 875–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    CAS  PubMed  Google Scholar 

  130. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359: 1757–1765.

    CAS  PubMed  Google Scholar 

  131. Li L, Wang H, Yang ES, Arteaga CL, Xia F . Erlotinib attenuates homologous recombinational repair of chromosomal breaks in human breast cancer cells. Cancer Res 2008; 68: 9141–9146.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nowsheen S, Bonner JA, Lobuglio AF, Trummell H, Whitley AC, Dobelbower MC et al. Cetuximab augments cytotoxicity with poly (adp-ribose) polymerase inhibition in head and neck cancer. PLoS One 2011; 6: e24148.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 2011; 17: 5132–5139.

    CAS  PubMed  Google Scholar 

  134. Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R . Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treat Rev 2013; 39: 375–387.

    CAS  PubMed  Google Scholar 

  135. Noguchi M, Yu D, Hirayama R, Ninomiya Y, Sekine E, Kubota N et al. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem Biophys Res Commun 2006; 351: 658–663.

    CAS  PubMed  Google Scholar 

  136. Dungey FA, Caldecott KW, Chalmers AJ . Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther 2009; 8: 2243–2254.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Maeta Y, Shiota G, Okano J, Murawaki Y . Effect of promoter methylation of the p16 gene on phosphorylation of retinoblastoma gene product and growth of hepatocellular carcinoma cells. Tumour Biol 2005; 26: 300–305.

    CAS  PubMed  Google Scholar 

  138. Zhang JX, Li DQ, He AR, Motwani M, Vasiliou V, Eswaran J et al. Synergistic inhibition of hepatocellular carcinoma growth by cotargeting chromatin modifying enzymes and poly (ADP-ribose) polymerases. Hepatology 2012; 55: 1840–1851.

    CAS  PubMed  Google Scholar 

  139. Brenner JC, Chinnaiyan AM . Translocations in epithelial cancers. Biochim Biophys Acta 2009; 1796: 201–215.

    CAS  PubMed  Google Scholar 

  140. Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer cell 2011; 19: 664–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2012; 2: 1036–1047.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Baker KM, Wei G, Schaffner AE, Ostrowski MC . Ets-2 and components of mammalian SWI/SNF form a repressor complex that negatively regulates the BRCA1 promoter. J Biol Chem 2003; 278: 17876–17884.

    CAS  PubMed  Google Scholar 

  143. Sharrocks AD . The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2001; 2: 827–837.

    CAS  PubMed  Google Scholar 

  144. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discover 2012; 2: 1048–1063.

    CAS  Google Scholar 

  145. Nowsheen S, Cooper T, Bonner JA, LoBuglio AF, Yang ES . HER2 overexpression renders human breast cancers sensitive to PARP inhibition independently of any defect in homologous recombination DNA repair. Cancer Res 2012; 72: 4796–4806.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.

    CAS  PubMed  Google Scholar 

  147. Merkhofer EC, Cogswell P, Baldwin AS . Her2 activates NF-kappaB and induces invasion through the canonical pathway involving IKKalpha. Oncogene 2010; 29: 1238–1248.

    CAS  PubMed  Google Scholar 

  148. Veuger SJ, Hunter JE, Durkacz BW . Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene 2009; 28: 832–842.

    CAS  PubMed  Google Scholar 

  149. Montoni A, Robu M, Pouliot E, Shah GM . Resistance to PARP-Inhibitors in Cancer Therapy. Front Pharmacol 2013; 4: 18.

    PubMed  PubMed Central  Google Scholar 

  150. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 2008; 451: 1111–1115.

    CAS  PubMed  Google Scholar 

  151. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 2008; 451: 1116–1120.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 2010; 141: 243–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 2010; 17: 688–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Patel AG, De Lorenzo SB, Flatten KS, Poirier GG, Kaufmann SH . Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin Cancer Res 2012; 18: 1655–1662.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2010; 28: 2512–2519.

    CAS  PubMed  Google Scholar 

  156. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010; 376: 235–244.

    CAS  PubMed  Google Scholar 

  157. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010; 376: 245–251.

    CAS  PubMed  Google Scholar 

  158. Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 2011; 12: 852–861.

    CAS  PubMed  Google Scholar 

  159. Kaye SB, Lubinski J, Matulonis U, Ang JE, Gourley C, Karlan BY et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol 2012; 30: 372–379.

    CAS  PubMed  Google Scholar 

  160. Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ . Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 2001; 19: 3312–3322.

    CAS  PubMed  Google Scholar 

  161. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 2012; 366: 1382–1392.

    CAS  PubMed  Google Scholar 

  162. Rajan A, Carter CA, Kelly RJ, Gutierrez M, Kummar S, Szabo E et al. A phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors. Clin Cancer Res 2012; 18: 2344–2351.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kummar S, Ji J, Morgan R, Lenz HJ, Puhalla SL, Belani CP et al. A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin Cancer Res 2012; 18: 1726–1734.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A et al. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 2008; 14: 7917–7923.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Plummer R, Lorigan P, Steven N, Scott L, Middleton MR, Wilson RH et al. A phase II study of the potent PARP inhibitor, Rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol 2013; 71: 1191–1199.

    CAS  PubMed  Google Scholar 

  166. Adams SF, Marsh EB, Elmasri W, Halberstadt S, Vandecker S, Sammel MD et al. A high response rate to liposomal doxorubicin is seen among women with BRCA mutations treated for recurrent epithelial ovarian cancer. Gynecol Oncol 2011; 123: 486–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Cancer Genome Atlas Research Network, Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Google Scholar 

  168. Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J et al. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 2011; 17: 1082–1089.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Moynahan ME, Chiu JW, Koller BH, Jasin M . Brca1 controls homology-directed DNA repair. Mol Cell 1999; 4: 511–518.

    CAS  PubMed  Google Scholar 

  170. Moynahan ME, Cui TY, Jasin M . Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 2001; 61: 4842–4850.

    CAS  PubMed  Google Scholar 

  171. Turner N, Tutt A, Ashworth A . Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer 2004; 4: 814–819.

    CAS  PubMed  Google Scholar 

  172. Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF et al. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 2003; 115: 523–535.

    CAS  PubMed  Google Scholar 

  173. Press JZ, De Luca A, Boyd N, Young S, Troussard A, Ridge Y et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 2008; 8: 17.

    PubMed  PubMed Central  Google Scholar 

  174. Mukhopadhyay A, Elattar A, Cerbinskaite A, Wilkinson SJ, Drew Y, Kyle S et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin Cancer Res 2010; 16: 2344–2351.

    CAS  PubMed  Google Scholar 

  175. Kashiwaya K, Hosokawa M, Eguchi H, Ohigashi H, Ishikawa O, Shinomura Y et al. Identification of C2orf18, termed ANT2BP (ANT2-binding protein), as one of the key molecules involved in pancreatic carcinogenesis. Cancer Sci 2009; 100: 457–464.

    CAS  PubMed  Google Scholar 

  176. Piao L, Nakagawa H, Ueda K, Chung S, Kashiwaya K, Eguchi H et al. C12orf48, termed PARP-1 binding protein, enhances poly(ADP-ribose) polymerase-1 (PARP-1) activity and protects pancreatic cancer cells from DNA damage. Genes Chromosome Cancer 2011; 50: 13–24.

    CAS  Google Scholar 

  177. O’Connor KW, Dejsuphong D, Park E, Nicolae CM, Kimmelman AC, D'Andrea AD et al. PARI Overexpression Promotes Genomic Instability and Pancreatic Tumorigenesis. Cancer Res 2013; 73: 2529–2539.

    PubMed  PubMed Central  Google Scholar 

  178. Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer 2012; 107: 1776–1782.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Stefansson OA, Jonasson JG, Johannsson OT, Olafsdottir K, Steinarsdottir M, Valgeirsdottir S et al. Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes. Br Cancer Res 2009; 11: R47.

    Google Scholar 

  180. Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Dis 2012; 2: 366–375.

    CAS  Google Scholar 

  181. Gros L, Saparbaev MK, Laval J . Enzymology of the repair of free radicals-induced DNA damage. Oncogene 2002; 21: 8905–8925.

    CAS  PubMed  Google Scholar 

  182. Saparbaev M, Laval J . Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sc USA 1994; 91: 5873–5877.

    CAS  Google Scholar 

  183. Gros L, Ishchenko AA, Saparbaev M . Enzymology of repair of etheno-adducts. Mutat Res 2003; 531: 219–229.

    CAS  PubMed  Google Scholar 

  184. Boiteux S, Radicella JP . The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 2000; 377: 1–8.

    CAS  PubMed  Google Scholar 

  185. Ocampo MT, Chaung W, Marenstein DR, Chan MK, Altamirano A, Basu AK et al. Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. Mol Cell Biol 2002; 22: 6111–6121.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Wilson DM 3rd, Barsky D . The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res 2001; 485: 283–307.

    CAS  PubMed  Google Scholar 

  187. Andressoo JO, Hoeijmakers JH, de Waard H . Nucleotide excision repair and its connection with cancer and ageing. Ad Exp Med Biol 2005; 570: 45–83.

    CAS  Google Scholar 

  188. Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 1998; 2: 223–232.

    CAS  PubMed  Google Scholar 

  189. Pegg AE . Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 1990; 50: 6119–6129.

    CAS  PubMed  Google Scholar 

  190. Gudmundsdottir K, Ashworth A . The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 2006; 25: 5864–5874.

    CAS  PubMed  Google Scholar 

  191. Jackson SP, Bartek J . The DNA-damage response in human biology and disease. Nature 2009; 461: 1071–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Wooster R, Weber BL . Breast and ovarian cancer. N Engl J Med 2003; 348: 2339–2347.

    CAS  PubMed  Google Scholar 

  193. Cerbinskaite A, Mukhopadhyay A, Plummer ER, Curtin NJ, Edmondson RJ . Defective homologous recombination in human cancers. Cancer Treat Rev 2012; 38: 89–100.

    CAS  PubMed  Google Scholar 

  194. Jacinto FV, Esteller M . Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 2007; 22: 247–253.

    CAS  PubMed  Google Scholar 

  195. Bullrich F, Rasio D, Kitada S, Starostik P, Kipps T, Keating M et al. ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Res 1999; 59: 24–27.

    CAS  PubMed  Google Scholar 

  196. Marsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT . Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 2004; 23: 1000–1004.

    CAS  PubMed  Google Scholar 

  197. Narayan G, Arias-Pulido H, Nandula SV, Basso K, Sugirtharaj DD, Vargas H et al. Promoter hypermethylation of FANCF: disruption of Fanconi Anemia-BRCA pathway in cervical cancer. Cancer Res 2004; 64: 2994–2997.

    CAS  PubMed  Google Scholar 

  198. Taniguchi T, Tischkowitz M, Ameziane N, Hodgson SV, Mathew CG, Joenje H et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 2003; 9: 568–574.

    CAS  PubMed  Google Scholar 

  199. Riffell JL, Lord CJ, Ashworth A . Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 2012; 11: 923–936.

    CAS  PubMed  Google Scholar 

  200. Kraus WL, Lis JT . PARP goes transcription. Cell 2003; 113: 677–683.

    CAS  PubMed  Google Scholar 

  201. Carbone M, Rossi MN, Cavaldesi M, Notari A, Amati P, Maione R . Poly(ADP-ribosyl)ation is implicated in the G0-G1 transition of resting cells. Oncogene 2008; 27: 6083–6092.

    CAS  PubMed  Google Scholar 

  202. Aurelius J, Thoren FB, Akhiani AA, Brune M, Palmqvist L, Hansson M et al. Monocytic AML cells inactivate antileukemic lymphocytes: role of NADPH oxidase/gp91(phox) expression and the PARP-1/PAR pathway of apoptosis. Blood 2012; 119: 5832–5837.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Khan OA, Gore M, Lorigan P, Stone J, Greystoke A, Burke W et al. A phase I study of the safety and tolerability of olaparib (AZD2281, KU0059436) and dacarbazine in patients with advanced solid tumours. Br J Cancer 2011; 104: 750–755.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Samol J, Ranson M, Scott E, Macpherson E, Carmichael J, Thomas A et al. Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest New Drugs 2012; 30: 1493–1500.

    CAS  PubMed  Google Scholar 

  205. Dean E, Middleton MR, Pwint T, Swaisland H, Carmichael J, Goodege-Kunwar P et al. Phase I study to assess the safety and tolerability of olaparib in combination with bevacizumab in patients with advanced solid tumours. Br J Cancer 2012; 106: 468–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Kummar S, Chen A, Ji J, Zhang Y, Reid JM, Ames M et al. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res 2011; 71: 5626–5634.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Bedikian AY, Papadopoulos NE, Kim KB, Hwu WJ, Homsi J, Glass MR et al. A phase IB trial of intravenous INO-1001 plus oral temozolomide in subjects with unresectable stage-III or IV melanoma. Cancer Invest 2009; 27: 756–763.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lorenzo Galluzzi (Université Paris Descartes, Paris, France) for assistance with manuscript preparation. The authors are supported by the Ligue contre le Cancer (équipe labellisée), Agence National de la Recherche, AXA Chair for Longevity Research, Association pour la Recherche sur le Cancer, Associazione Italiana per la Ricerca sul Cancro (AIRC), Cancéropôle Ile-de-France, Institut National du Cancer (INCa), Fondation Bettencourt-Schueller, Fondation de France, Fondation pour la Recherche Médicale, the European Commission (ArtForce), the European Research Council, the LabEx Immuno-Oncology, Action Lions ‘Vaincre le Cancer’, Luxembourg, the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (Socrate) and Cancer Research and Personalized Medicine (Carpem) and the Paris Alliance of Cancer Research Institutes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Castedo or G Kroemer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michels, J., Vitale, I., Saparbaev, M. et al. Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene 33, 3894–3907 (2014). https://doi.org/10.1038/onc.2013.352

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.352

Keywords

This article is cited by

Search

Quick links