Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis in breast cancer

Abstract

The HER2 (ERBB2) and MYC genes are commonly amplified in breast cancer, yet little is known about their molecular and clinical interaction. Using a novel chimeric mammary transgenic approach and in vitro models, we demonstrate markedly increased self-renewal and tumour-propagating capability of cells transformed with Her2 and c-Myc. Coexpression of both oncoproteins in cultured cells led to the activation of a c-Myc transcriptional signature and acquisition of a self-renewing phenotype independent of an epithelial–mesenchymal transition programme or regulation of conventional cancer stem cell markers. Instead, Her2 and c-Myc cooperated to induce the expression of lipoprotein lipase, which was required for proliferation and self-renewal in vitro. HER2 and MYC were frequently coamplified in breast cancer, associated with aggressive clinical behaviour and poor outcome. Lastly, we show that in HER2+ breast cancer patients receiving adjuvant chemotherapy (but not targeted anti-Her2 therapy), MYC amplification is associated with a poor outcome. These findings demonstrate the importance of molecular and cellular context in oncogenic transformation and acquisition of a malignant stem-like phenotype and have diagnostic and therapeutic consequences for the clinical management of HER2+ breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.

    Article  PubMed  Google Scholar 

  2. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  3. Moasser MM . The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 2007; 26: 6469–6487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P et al. Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 2009; 15: 2010–2021.

    Article  CAS  PubMed  Google Scholar 

  5. Korkaya H, Paulson A, Iovino F, Wicha MS . HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27: 6120–6130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. Genomic targets of the human c-Myc protein. Genes Dev 2003; 17: 1115–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stoelzle T, Schwarb P, Trumpp A, Hynes NE . c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland. BMC Biol 2009; 7: 63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  9. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY . Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2008; 2: 333–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deming SL, Nass SJ, Dickson RB, Trock BJ . C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer 2000; 83: 1688–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Persons DL, Borelli KA, Hsu PH . Quantitation of HER-2/neu and c-myc gene amplification in breast carcinoma using fluorescence in situ hybridization. Mod Pathol 1997; 10: 720–727.

    CAS  PubMed  Google Scholar 

  12. Park K, Kwak K, Kim J, Lim S, Han S . c-myc amplification is associated with HER2 amplification and closely linked with cell proliferation in tissue microarray of nonselected breast cancers. Hum Pathol 2005; 36: 634–639.

    Article  CAS  PubMed  Google Scholar 

  13. Hynes NE, Lane HA . Myc and mammary cancer: Myc is a downstream effector of the ErbB2 receptor tyrosine kinase. J Mamm Gland Biol Neoplasia 2001; 6: 141–150.

    Article  CAS  Google Scholar 

  14. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Welm AL, Kim S, Welm BE, Bishop JM . MET and MYC cooperate in mammary tumorigenesis. Proc Natl Acad Sci USA 2005; 102: 4324–4329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stewart TA, Pattengale PK, Leder P . Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 1984; 38: 627–637.

    Article  CAS  PubMed  Google Scholar 

  17. D'Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 2001; 7: 235–239.

    Article  CAS  PubMed  Google Scholar 

  18. Bargmann CI, Weinberg RA . Increased tyrosine kinase activity associated with the protein encoded by the activated neu oncogene. Proc Natl Acad Sci USA 1988; 85: 5394–5398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992; 89: 10578–10582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci 2011; 109: 2778–2783.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P . Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54: 105–115.

    Article  CAS  PubMed  Google Scholar 

  23. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010; 143: 313–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolfer A, Wittner BS, Irimia D, Flavin RJ, Lupien M, Gunawardane RN et al. MYC regulation of a ‘poor-prognosis’ metastatic cancer cell state. Proc Natl Acad Sci 2010; 107: 3698–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lo PK, Kanojia D, Liu X, Singh UP, Berger FG, Wang Q et al. CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGF[beta] signaling. Oncogene 2011; 31: 2614–2626.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E . Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 2007; 67: 8671–8681.

    Article  CAS  PubMed  Google Scholar 

  27. Lee T, Yao G, Nevins J, You L . Sensing and integration of Erk and PI3K signals by Myc. PLoS Comput Biol 2008; 4: e1000013.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hardy KM, Booth BW, Hendrix MJ, Salomon DS, Strizzi L . ErbB/EGF signaling and EMT in mammary development and breast cancer. J Mammary Gland Biol Neoplasia 2010; 15: 191–199.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  31. Dykxhoorn DM, Wu Y, Xie H, Yu F, Lal A, Petrocca F et al. MiR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One 2009; 4: e7181.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–997.

    Article  CAS  PubMed  Google Scholar 

  33. Alonso SR, Tracey L, Ortiz P, Perez-Gomez B, Palacios J, Pollan M et al. A high-throughput study in melanoma identifies epithelial–mesenchymal transition as a major determinant of metastasis. Cancer Res 2007; 67: 3450–3460.

    Article  CAS  PubMed  Google Scholar 

  34. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146: 633–644.

    Article  CAS  PubMed  Google Scholar 

  35. Fillmore CM, Kuperwasser C . Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008; 10: R25.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Visvader JE, Lindeman GJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–768.

    Article  CAS  PubMed  Google Scholar 

  38. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE . The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008; 68: 7711–7717.

    Article  CAS  PubMed  Google Scholar 

  39. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 2009; 37 (Suppl 1): D619–D622.

    Article  CAS  PubMed  Google Scholar 

  41. Bilban M, Heintel D, Scharl T, Woelfel T, Auer MM, Porpaczy E et al. Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression. Leukemia 2006; 20: 1080–1088.

    Article  CAS  PubMed  Google Scholar 

  42. Kim YH, Girard L, Giacomini CP, Wang P, Hernandez-Boussard T, Tibshirani R et al. Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene 2005; 25: 130–138.

    Article  Google Scholar 

  43. Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  44. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  45. Wicha MS, Liu S, Dontu G . Cancer stem cells: an old idea—a paradigm shift. Cancer Res 2006; 66: 1883–1890.

    Article  CAS  PubMed  Google Scholar 

  46. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010; 120: 485–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Perez EA, Jenkins RB, Dueck AC, Wiktor AE, Bedroske PP, Anderson SK et al. C-MYC alterations and association with patient outcome in early-stage HER2-positive breast cancer from the north central cancer treatment group N9831 adjuvant trastuzumab trial. J Clin Oncol 2011; 29: 651–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Axelrod R, Axelrod DE, Pienta KJ. . Evolution of cooperation among tumor cells. Proc Natl Acad Sci USA 2006; 103: 13474–13479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  50. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  51. Liu H, Fan QH, Zhang ZH, Li X, Yu HP, Meng FQ . Basal-HER2 phenotype shows poorer survival than basal-like phenotype in hormone receptor-negative invasive breast cancers. Hum Pathol 2008; 39: 167–174.

    Article  CAS  PubMed  Google Scholar 

  52. Bagaria SP, Ray PS, Wang J, Kropcho L, Chung A, Sim MS et al. Prognostic value of basal phenotype in HER2-overexpressing breast cancer. Ann Surg Oncol 2012; 19: 935–940.

    Article  PubMed  Google Scholar 

  53. Felsher DW, Bishop JM . Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 1999; 96: 3940–3944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  55. Celià-Terrassa T, Meca-Cortés Ó, Mateo F, Martínez de Paz A, Rubio N, Arnal-Estapé A et al. Epithelial–mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest 2012; 122: 1849–1868.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mead JR, Irvine SA, Ramji DP . Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med 2002; 80: 753–769.

    Article  CAS  PubMed  Google Scholar 

  57. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Carter SA, Foster NA, Scarpini CG, Chattopadhyay A, Pett MR, Roberts I et al. Lipoprotein lipase is frequently overexpressed or translocated in cervical squamous cell carcinoma and promotes invasiveness through the non-catalytic C terminus. Br J Cancer 2012; 107: 739–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heintel D, Kienle D, Shehata M, Krober A, Kroemer E, Schwarzinger I et al. High expression of lipoprotein lipase in poor risk B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 1216–1223.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang W, Kater AP, Widhopf GF, Chuang H-Y, Enzler T, James DF et al. B-cell activating factor and v-Myc myelocytomatosis viral oncogene homolog (c-Myc) influence progression of chronic lymphocytic leukemia. Proc Natl Acad Sci 2010; 107: 18956–18960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM et al. ENCODE Data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 2013; 41: D56–D63.

    Article  CAS  PubMed  Google Scholar 

  62. Danilo C, Frank PG . Cholesterol and breast cancer development. Curr Opin Pharmacol 2012; 12: 677–682.

    Article  CAS  PubMed  Google Scholar 

  63. Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM et al. Role of cholesterol in the development and progression of breast cancer. Am J Pathol 2011; 178: 402–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shachaf CM, Gentles AJ, Elchuri S, Sahoo D, Soen Y, Sharpe O et al. Genomic and proteomic analysis reveals a threshold level of MYC required for tumor maintenance. Cancer Res 2008; 68: 5132–5142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA et al. Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 2008; 14: 447–457.

    Article  CAS  PubMed  Google Scholar 

  66. Swarbrick A, Roy E, Allen T, Bishop JM . Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci USA 2008; 105: 5402–5407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Roberts PJ, Usary JE, Darr DB, Dillon PM, Pfefferle AD, Whittle MC et al. Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful murine cancer models. Clin Cancer Res 2012; 18: 5290–5303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Olshen AB, Venkatraman ES, Lucito R, Wigler M . Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 2004; 5: 557–572.

    Article  PubMed  Google Scholar 

  69. O’Toole SA, Machalek DA, Shearer RF, Millar EKA, Nair R, Schofield P et al. Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer. Cancer Res 2011; 71: 4002–4014.

    Article  PubMed  Google Scholar 

  70. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 2008; 14: 1368–1376.

    Article  CAS  PubMed  Google Scholar 

  71. Hu Y, Smyth GK . ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.

    Article  CAS  PubMed  Google Scholar 

  72. Brummer T, Schramek D, Hayes VM, Bennett HL, Caldon CE, Musgrove EA et al. Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. J Biol Chem 2006; 281: 626–637.

    Article  CAS  PubMed  Google Scholar 

  73. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gautier L, Cope L, Bolstad BM, Irizarry RA . affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307–315.

    Article  CAS  PubMed  Google Scholar 

  75. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: (Article 3).

    Article  Google Scholar 

  77. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP . GenePattern 2.0. Nat Genet 2006; 38: 500–501.

    Article  CAS  PubMed  Google Scholar 

  78. Lopez-Knowles E, O’Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer 2010; 126: 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  79. Lopez-Knowles E, Zardawi SJ, McNeil CM, Millar EK, Crea P, Musgrove EA et al. Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol Biomarkers Prev 2010; 19: 301–309.

    Article  CAS  PubMed  Google Scholar 

  80. Millar EK, Anderson LR, McNeil CM, O'Toole SA, Pinese M, Crea P et al. BAG-1 predicts patient outcome and tamoxifen responsiveness in ER-positive invasive ductal carcinoma of the breast. Br J Cancer 2009; 100: 123–133.

    Article  CAS  PubMed  Google Scholar 

  81. Laudadio J, Quigley DI, Tubbs R, Wolff DJ . HER2 testing: a review of detection methodologies and their clinical performance. Expert Rev Mol Diagn 2007; 7: 53–64.

    Article  CAS  PubMed  Google Scholar 

  82. Perez E, Reinholz M, Dueck A, Wiktor A, Lingle W, Davidson N et al. c-MYC amplification and correlation with patient outcome in early stage HER2+ breast cancer from the NCCTG adjuvant intergroup trial N9831. Cancer Res 2009; 69 (Suppl): 56.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor JM Bishop and The GW Hooper Foundation (UCSF); Nikki Ailing and Alice Boulghourjian for technical assistance with Flow cytometry and Immunohistochemistry, respectively; and Aurelie Cazet for proof reading the manuscript. WST is a recipient of an International Postgraduate Research Scholarship (IPRS) and the Beth Yarrow Memorial Award in Medical Science. We would like to acknowledge funding from Victoria Taylor, Sydney Breast Cancer Foundation, CCNSW and Colin Biggers & Paisley, Sydney. This research was supported by an Early Career Fellowship from the National Breast Cancer Foundation Australia. AS is a Career Development Fellow of the National Health and Medical Research Council of Australia. SOT is funded by the Cancer Institute NSW Clinical Research Fellowship 10-CRF 1-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Swarbrick.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, R., Roden, D., Teo, W. et al. c-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis in breast cancer. Oncogene 33, 3992–4002 (2014). https://doi.org/10.1038/onc.2013.368

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.368

Keywords

Search

Quick links