Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNAs and cancer stem cells: the sword and the shield

Abstract

Emerging chemotherapy drugs and targeted therapies have been widely applied in anticancer treatment and have given oncologists a promising future. Nevertheless, regeneration and recurrence are still huge obstacles on the way to cure cancer. Cancer stem cells (CSCs) are capable of self-renewal, tumor initiation, recurrence, metastasis, therapy resistance, and reside as a subset in many, if not all, cancers. Therefore, therapeutics specifically targeting and killing CSCs are being identified, and may be promising and effective strategies to eliminate cancer. MicroRNAs (miRNAs, miRs), small noncoding RNAs regulating gene expression in a post-transcriptional manner, are dysregulated in most malignancies and are identified as important regulators of CSCs. However, limited knowledge exists for biological and molecular mechanism by which miRNAs regulate CSCs. In this article, we review CSCs, miRNAs and the interactions between miRNA regulation and CSCs, with a specific focus on the molecular mechanisms and clinical applications. This review will help us to know in detail how CSCs are regulated by miRNAs networks and also help to develop more effective and secure miRNA-based clinical therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global Cancer Statistics. A Cancer Journal for Clinicians, CA, 2011; vol 61: 69–90.

    Google Scholar 

  2. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med [10.1038/nm.2304] 2011; 17: 313–319.

    Article  CAS  PubMed  Google Scholar 

  3. Seton-Rogers S . Cancer stem cells: easily moulded. Nat Rev Cancer 2013; 13: 519.

    CAS  PubMed  Google Scholar 

  4. Gilbertson RJ, Graham TA . Cancer: resolving the stem-cell debate. Nature 2012; 488: 462–463.

    CAS  PubMed  Google Scholar 

  5. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453: 1072–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vira D, Basak S, Veena M, Wang M, Batra R, Srivatsan E . Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metast Rev 2012; 31: 733–751.

    CAS  Google Scholar 

  7. Giovannetti E, Erozenci A, Smit J, Danesi R, Peters GJ . Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol 2012; 81: 103–122.

    PubMed  Google Scholar 

  8. Khoshnaw SM, Green AR, Powe DG, Ellis IO . MicroRNA involvement in the pathogenesis and management of breast cancer. J Clin Pathol 2009; 62: 422–428.

    CAS  PubMed  Google Scholar 

  9. Marcucci G, Mrozek K, Radmacher MD, Bloomfield CD, Croce CM . MicroRNA expression profiling in acute myeloid and chronic lymphocytic leukaemias. Best Pract Res Clin Haematol 2009; 22: 239–248.

    CAS  PubMed  Google Scholar 

  10. Mendell Joshua T, Olson Eric N . MicroRNAs in stress signaling and human disease. Cell 2012; 148: 1172–1187.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang D, Qiu C, Zhang H, Wang J, Cui Q, Yin Y . Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One 2010; 5: e13067.

    PubMed  PubMed Central  Google Scholar 

  12. Samantarrai D, Dash S, Chhetri B, Mallick B . Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Mol Cancer Res 2013; 11: 315–328.

    CAS  PubMed  Google Scholar 

  13. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K . MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2009; 113: 396–402.

    CAS  PubMed  Google Scholar 

  14. Papagiannakopoulos T, Shapiro A, Kosik KS . MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 2008; 68: 8164–8172.

    CAS  PubMed  Google Scholar 

  15. Schramedei K, Morbt N, Pfeifer G, Lauter J, Rosolowski M, Tomm JM et al. MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 2011; 30: 2975–2985.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Hara AJ, Wang L, Dezube BJ, Harrington WJ Jr., Damania B, Dittmer DP . Tumor suppressor microRNAs are underrepresented in primary effusion lymphoma and Kaposi sarcoma. Blood 2009; 113: 5938–5941.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sindhu C, Samavarchi-Tehrani P, Meissner A . Transcription factor-mediated epigenetic reprogramming. J Biol Chem 2012; 287: 30922–30931.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    CAS  PubMed  Google Scholar 

  19. Tiwari N, Tiwari Vijay K, Waldmeier L, Balwierz Piotr J, Arnold P, Pachkov M et al. Sox4 Is a Master Regulator of Epithelial-Mesenchymal Transition by Controlling Ezh2 Expression and Epigenetic Reprogramming. Cancer Cell 2013; 23: 768–783.

    CAS  PubMed  Google Scholar 

  20. Ceppi P, Peter ME . MicroRNAs regulate both epithelial-to-mesenchymal transition and cancer stem cells. Oncogene 2014; 33: 269–278.

    CAS  PubMed  Google Scholar 

  21. Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 2008; 182: 509–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ . Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 2012; 28: 454–463.

    CAS  PubMed  Google Scholar 

  23. Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011; 10: 4256–4271.

    CAS  PubMed  Google Scholar 

  24. Liep J, Rabien A, Jung K . Feedback networks between microRNAs and epigenetic modifications in urological tumors. Epigenetics 2012; 7: 315–325.

    CAS  PubMed  Google Scholar 

  25. Lopez-Chavez A, Carter CA, Giaccone G . The role of KRAS mutations in resistance to EGFR inhibition in the treatment of cancer. Curr Opin Investig Drugs 2009; 10: 1305–1314.

    CAS  PubMed  Google Scholar 

  26. Liu B, Qu L, Tao H . Cyclo-oxygenase 2 up-regulates the effect of multidrug resistance. Cell Biol Int 2010; 34: 21–25.

    CAS  Google Scholar 

  27. Bardelli A, Siena S . Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol 2010; 28: 1254–1261.

    CAS  PubMed  Google Scholar 

  28. Mishra PJ, Bertino JR . MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 2009; 10: 399–416.

    CAS  PubMed  Google Scholar 

  29. Sandhu S, Garzon R . Potential Applications of MicroRNAs in Cancer Diagnosis, Prognosis, and Treatment. Semin Oncol 2011; 38: 781–787.

    CAS  PubMed  Google Scholar 

  30. Zheng T, Wang J, Chen X, Liu L . Role of microRNA in anticancer drug resistance.  Int J Cancer 2010; 126: 2–10.

    CAS  PubMed  Google Scholar 

  31. Xu K, Liang X, Shen K, Cui D, Zheng Y, Xu J et al. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochem J 2012; 446: 291–300.

    CAS  PubMed  Google Scholar 

  32. Turrini E, Haenisch S, Laechelt S, Diewock T, Bruhn O, Cascorbi I . MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet Genom 2012; 22: 198–205.

    CAS  Google Scholar 

  33. Li WQ, Li YM, Tao BB, Lu YC, Hu GH, Liu HM et al. Downregulation of ABCG2 expression in glioblastoma cancer stem cells with miRNA-328 may decrease their chemoresistance. Med Sci Monit 2010; 16: HY27–HY30.

    PubMed  Google Scholar 

  34. Borel F, Han R, Visser A, Petry H, van Deventer SJ, Jansen PL et al. Adenosine triphosphate-binding cassette transporter genes up-regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs. Hepatology 2012; 55: 821–832.

    CAS  PubMed  Google Scholar 

  35. Boyerinas B, Park SM, Murmann AE, Gwin K, Montag AG, Zillhardt M et al. Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of multidrug resistance 1. Int J Cancer 2012; 130: 1787–1797.

    CAS  PubMed  Google Scholar 

  36. Weng D, Song B, Koido S, Calderwood SK, Gong J . Immunotherapy of radioresistant mammary tumors with early metastasis using molecular chaperone vaccines combined with ionizing radiation. J Immunol 2013; 191: 755–763.

    CAS  PubMed  Google Scholar 

  37. Debeb BG, Xu W, Woodward WA . Radiation resistance of breast cancer stem cells: understanding the clinical framework. J Mammary Gland Biol Neoplasia 2009; 14: 11–17.

    PubMed  Google Scholar 

  38. Shiiba M, Shinozuka K, Saito K, Fushimi K, Kasamatsu A, Ogawara K et al. MicroRNA-125b regulates proliferation and radioresistance of oral squamous cell carcinoma. Br J Cancer 2013; 108: 1817–1821.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Yan LX, Wu QN, Du ZM, Chen J, Liao DZ et al. miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res 2011; 71: 3552–3562.

    CAS  PubMed  Google Scholar 

  40. Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A . Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 2013; 108: 378–387.

    PubMed  Google Scholar 

  41. Yu Z, Pestell TG, Lisanti MP, Pestell RG . Cancer stem cells.  Int J Biochem Cell Biol 2012; 44: 2144–2151.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Plath K, Srivastava D, Alvarez-Buylla A, Tanaka EM, Kriegstein AR . Stem Cells in the Land of the Rising Sun: ISSCR 2012. Cell stem cell 2012; 11: 607–614.

    CAS  PubMed  Google Scholar 

  43. Li Y, Laterra J . Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 2012; 72: 576–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu Z, Li Y, Fan H, Liu Z, Pestell RG . miRNAs regulate stem cell self-renewal and differentiation. Front Genet 2012; 3: 191.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009; 138: 1083–1095.

    CAS  PubMed  Google Scholar 

  46. Nguyen LV, Vanner R, Dirks P, Eaves CJ . Cancer stem cells: an evolving concept. Nat Rev Cancer 2012; 12: 133–143.

    CAS  PubMed  Google Scholar 

  47. Rich JN . Cancer stem cells in radiation resistance. Cancer Res 2007; 67: 8980–8984.

    CAS  PubMed  Google Scholar 

  48. Schieber Michael S, Chandel Navdeep SROS . Links glucose metabolism to breast cancer stem cell and emt phenotype. Cancer Cell 2013; 23: 265–267.

    CAS  PubMed  Google Scholar 

  49. Tamara Marie-Egyptienne D, Lohse I, Hill RP . Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett 2012, http://dx.doi.org/10.1016/j.canlet.2012.11.019.

  50. Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell stem cell 2010; 6: 421–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG . Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res 2012; 72: 3393–3404.

    CAS  PubMed  Google Scholar 

  52. Ho MM, Ng AV, Lam S, Hung JY . Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67: 4827–4833.

    CAS  PubMed  Google Scholar 

  53. Schatton T, Frank NY, Frank MH . Identification and targeting of cancer stem cells. Bioessays 2009; 31: 1038–1049.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Katoh M . Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 2006; 17: 681–685.

    CAS  PubMed  Google Scholar 

  55. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    CAS  PubMed  Google Scholar 

  56. Polakis P . Wnt Signaling in Cancer. Cold Spring Harb Perspect Biol 2012; 4: a008052.

    PubMed  PubMed Central  Google Scholar 

  57. Katoh M, Katoh M . WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007; 13: 4042–4045.

    CAS  PubMed  Google Scholar 

  58. Beildeck ME, Gelmann EP, Byers SW . Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Exp Cell Res 2010; 316: 1763–1772.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 2010; 24: 574–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A et al. Notch-1 induces epithelial–mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 2011; 307: 26–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Das C, Lucia MS, Hansen KC, Tyler JK . CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009; 459: 113–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. McDonald OG, Wu H, Timp W, Doi A, Feinberg AP . Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 2011; 18: 867–874.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–679.

    CAS  PubMed  Google Scholar 

  64. Baumann M, Krause M, Hill R . Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8: 545–554.

    CAS  PubMed  Google Scholar 

  65. To K, Fotovati A, Reipas KM, Law JH, Hu K, Wang J et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res 2010; 70: 2840–2851.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN et al. Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 2008; 68: 3243–3250.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nguyen GH, Murph MM, Chang JY . Cancer stem cell radioresistance and enrichment: where frontline radiation therapy may fail in lung and esophageal cancers. Cancers (Basel) 2011; 3: 1232–1252.

    Google Scholar 

  68. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5: 67.

    PubMed  PubMed Central  Google Scholar 

  69. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008; 3: e2428.

    PubMed  PubMed Central  Google Scholar 

  70. Mihatsch J, Toulany M, Bareiss PM, Grimm S, Lengerke C, Kehlbach R et al. Selection of radioresistant tumor cells and presence of ALDH1 activity in vitro. Radiother Oncol 2011; 99: 300–306.

    CAS  PubMed  Google Scholar 

  71. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 2009; 27: 2059–2068.

    CAS  PubMed  Google Scholar 

  72. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458: 780–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 2011; 19: 387–400.

    CAS  PubMed  Google Scholar 

  74. Yao JC, Phan AT, Jehl V, Shah G, Meric-Bernstam F . Everolimus in advanced pancreatic neuroendocrine tumors: the clinical experience. Cancer Res 2013; 73: 1449–1453.

    CAS  PubMed  Google Scholar 

  75. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13: 239–246.

    CAS  PubMed  Google Scholar 

  76. Ha HT, Griffith KA, Zalupski MM, Schuetze SM, Thomas DG, Lucas DR et al. Phase II trial of cetuximab in patients with metastatic or locally advanced soft tissue or bone sarcoma. Am J Clin Oncol 2013; 36: 77–82.

    CAS  PubMed  Google Scholar 

  77. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005; 105: 4163–4169.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hoey T, Yen WC, Axelrod F, Basi J, Donigian L, Dylla S et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell stem cell 2009; 5: 168–177.

    CAS  PubMed  Google Scholar 

  79. Piccirillo SGM, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature [10.1038/nature05349] 2006; 444: 761–765.

    CAS  PubMed  Google Scholar 

  80. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11: 69–82.

    CAS  PubMed  Google Scholar 

  81. Bourguignon LW . Overcoming chemotherapy resistance by targeting hyaluronan/ cd44-mediated stem cell marker (nanog) signaling and microrna-21 in breast, ovarian, and head and neck cancer. In: Hayat MA editor. Stem Cells and Cancer Stem Cells Volume 9. Springer, Netherlands, 2013, p 291–298.

    Google Scholar 

  82. Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T et al. Modulation of glucose metabolism by cd44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 2012; 72: 1438–1448.

    CAS  PubMed  Google Scholar 

  83. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010; 120: 485–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu K, Jiao X, Li Z, Katiyar S, Casimiro MC, Yang W et al. Cell fate determination factor Dachshund reprograms breast cancer stem cell function. J Biol Chem 2011; 286: 2132–2142.

    CAS  PubMed  Google Scholar 

  85. Zimmerman AL, Wu S . MicroRNAs, cancer and cancer stem cells. Cancer Lett 2011; 300: 10–19.

    CAS  PubMed  Google Scholar 

  86. Sayed D, Abdellatif M . MicroRNAs in development and disease. Physiol Rev 2011; 91: 827–887.

    CAS  PubMed  Google Scholar 

  87. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG . Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res 2012; 72: 3393–3404.

    CAS  PubMed  Google Scholar 

  89. Liu C, Tang DG . MicroRNA regulation of cancer stem cells. Cancer Res 2011; 71: 5950–5954.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 2009; 69: 7569–7576.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu C, Tang DG . MicroRNA regulation of cancer stem cells. Cancer Res 2011; 71: 5950–5954.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun X, Fan C, Du N, Ren H . Possible carcinogenesis of tumor suppressor let-7. Med Hypotheses 2013; 81: 410–413.

    CAS  PubMed  Google Scholar 

  93. Pestell RG . New roles of cyclin d1. Am J Pathol 2013; 183: 3–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. O'Day E, Lal A . MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 2010; 12: 201.

    PubMed  PubMed Central  Google Scholar 

  95. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y et al. Serum microrna signatures identified in a genome-wide serum microrna expression profiling predict survival of non–small-cell lung cancer. J Clin Oncol 2010; 28: 1721–1726.

    PubMed  Google Scholar 

  96. Mallick R, Yendamuri S, Patnaik S . MicroRNAs and lung cancer. Biology and applications in diagnosis and prognosis 2010; 81: 410–413.

    Google Scholar 

  97. Li M, Marin-Muller C, Bharadwaj U, Chow KH, Yao Q, Chen C . MicroRNAs: control and loss of control in human physiology and disease. World J Surg 2009; 33: 667–684.

    PubMed  PubMed Central  Google Scholar 

  98. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 2008; 105: 3903–3908.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Boyerinas B, Park S-M, Hau A, Murmann AE, Peter ME . The role of let-7 in cell differentiation and cancer. Endocr-Relat Cancer 2010; 17: F19–F36.

    CAS  PubMed  Google Scholar 

  100. Zhu Y, Yu F, Jiao Y, Feng J, Tang W, Yao H et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 2011; 17: 7105–7115.

    CAS  PubMed  Google Scholar 

  101. Yang YP, Chien Y, Chiou GY, Cherng JY, Wang ML, Lo WL et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 2012; 33: 1462–1476.

    CAS  PubMed  Google Scholar 

  102. Cheng W, Liu T, Wan X, Gao Y, Wang H . MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J 2012; 279: 2047–2059.

    CAS  PubMed  Google Scholar 

  103. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. DeSano JT, Xu L . MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J 2009; 11: 682–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Plummer PN, Freeman R, Taft RJ, Vider J, Sax M, Umer BA et al. MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells. Cancer Res 2013; 73: 341–352.

    CAS  PubMed  Google Scholar 

  106. Yu F, Deng H, Yao H, Liu Q, Su F, Song E . Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010; 29: 4194–4204.

    CAS  PubMed  Google Scholar 

  107. Pirollo KF, Rait A, Zhou Q, Hwang SH, Dagata JA, Zon G et al. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res 2007; 67: 2938–2943.

    CAS  PubMed  Google Scholar 

  108. Hu X, Guo J, Zheng L, Li C, Zheng TM, Tanyi JL et al. The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Mol Cancer Res 2013; 11: 240–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Murray MY, Rushworth SA, MacEwan DJ . Micro RNAs as a new therapeutic target towards leukaemia signalling. Cell Signal 2012; 24: 363–368.

    CAS  PubMed  Google Scholar 

  110. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011; 19: 1116–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al. Development of a lung cancer therapeutic based on the tumor suppressor microrna-34. Cancer Res 2010; 70: 5923–5930.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang D, Qiu C, Zhang H, Wang J, Cui Q, Yin Y . Human microrna oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One 2010; 5: e13067.

    PubMed  PubMed Central  Google Scholar 

  113. Zhang R, He Y, Zhang X, Xing B, Sheng Y, Lu H et al. Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett 2012; 314: 155–165.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported in part by NIH grants R01CA70896, R01CA75503, R01CA86072, R01CA137494 and R01CA132115 and National Natural Science Foundation of China 81272418. We are grateful to Elsa R Flores, Ph.D. (Department of Biochemistry and Molecular Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center) for her helpful advice and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Ren or R G Pestell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Jiao, X., Pestell, T. et al. MicroRNAs and cancer stem cells: the sword and the shield. Oncogene 33, 4967–4977 (2014). https://doi.org/10.1038/onc.2013.492

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.492

Keywords

This article is cited by

Search

Quick links