Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation

Abstract

Tumour necrosis factor-α (TNF) is a cytokine endowed with multiple functions, depending on the cellular and environmental context. TNF receptor engagement induces the formation of a multimolecular complex including the TNFR-associated factor TRAF2, the receptor-interaction protein kinase RIP1 and the cellular inhibitor of apoptosis cIAP1, the latter being essential for NF-κB activation. Here, we show that cIAP1 also regulates TNF-induced actin cytoskeleton reorganization through a cdc42-dependent, NF-κB-independent pathway. Deletion of cIAP1 prevents TNF-induced filopodia and cdc42 activation. The expression of cIAP1 or its E3-ubiquitin ligase-defective mutant restores the ability of cIAP1−/− MEFs to produce filopodia, whereas a cIAP1 mutant unable to bind TRAF2 does not. Accordingly, the silencing of TRAF2 inhibits TNF-mediated filopodia formation, whereas silencing of RIP1 does not. cIAP1 directly binds cdc42 and promotes its RhoGDIα-mediated stabilization. TNF decreases cIAP1-cdc42 interaction, suggesting that TNF-induced recruitment of cIAP1/TRAF2 to the receptor releases cdc42, which in turn triggers actin remodeling. cIAP1 also regulates cdc42 activation in response to EGF and HRas-V12 expression. A downregulation of cIAP1 altered the cell polarization, the cell adhesion to endothelial cells and cell intercalation, which are cdc42-dependent processes. Finally, we demonstrated that the deletion of cIAP1 regulated the HRas-V12-mediated transformation process, including anchorage-dependent cell growth, tumour growth in a xenograft model and the development of experimental metastasis in the lung.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Parameswaran N, Patial S . Tumor necrosis factor-alpha signaling in macrophages. Crit Rev Eukaryot Gene Expr 2010; 20: 87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mathew SJ, Haubert D, Kronke M, Leptin M . Looking beyond death: a morphogenetic role for the TNF signalling pathway. J Cell Sci 2009; 122: 1939–1946.

    Article  CAS  PubMed  Google Scholar 

  3. McKenzie JA, Ridley AJ . Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 2007; 213: 221–228.

    Article  CAS  PubMed  Google Scholar 

  4. Peppelenbosch M, Boone E, GE Jones, van Deventer SJ, Haegeman G, Fiers W et al. Multiple signal transduction pathways regulate TNF-induced actin reorganization in macrophages: inhibition of cdc42-mediated filopodium formation by TNF. J Immunol 1999; 162: 837–845.

    CAS  PubMed  Google Scholar 

  5. Puls A, Eliopoulos AG, Nobes CD, Bridges T, Young LS, Hall A . Activation of the small GTPase Cdc42 by the inflammatory cytokines TNF(alpha) and IL-1, and by the Epstein-Barr virus transforming protein LMP1. J Cell Sci 1999; 112: 2983–2992.

    CAS  PubMed  Google Scholar 

  6. Stengel K, Zheng Y . Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal 2011; 23: 1415–1423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia-Mata R, Boulter E, Burridge K . The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 2011; 12: 493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Micheau O, Tschopp J . Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114: 181–190.

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008; 30: 689–700.

    CAS  PubMed  Google Scholar 

  10. Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. Embo J 2010; 29: 4198–4209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 2009; 36: 831–844.

    Article  CAS  PubMed  Google Scholar 

  12. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008; 283: 24295–24299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Silke J . The regulation of TNF signalling: what a tangled web we weave. Curr Opin Immunol 2011; 23: 620–626.

    Article  CAS  PubMed  Google Scholar 

  14. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 2011; 43: 449–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    Article  CAS  PubMed  Google Scholar 

  16. Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 2011; 18: 656–665.

    Article  CAS  PubMed  Google Scholar 

  17. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

    Article  CAS  PubMed  Google Scholar 

  18. Gyrd-Hansen M, Darding M, Miasari M, Santoro MM, Zender L, Xue W et al. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat Cell Biol 2008; 10: 1309–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopez J, John SW, Tenev T, Rautureau GJ, Hinds MG, Francalanci F et al. CARD-Mediated Autoinhibition of cIAP1's E3 Ligase Activity Suppresses Cell Proliferation and Migration. Mol Cell 2011; 42: 569–583.

    Article  CAS  PubMed  Google Scholar 

  20. Gyrd-Hansen M, Meier P . IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 2010; 10: 561–574.

    Article  CAS  PubMed  Google Scholar 

  21. Xu L, Zhu J, Hu X, Zhu H, Kim HT, LaBaer J et al. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol Cell 2007; 28: 914–922.

    Article  CAS  PubMed  Google Scholar 

  22. Cartier J, Berthelet J, Marivin A, Gemble S, Edmond V, Plenchette S et al. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription. J Biol Chem 2011; 286: 26406–26417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008; 9: 1371–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008; 9: 1364–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oberoi TK, Dogan T, Hocking JC, Scholz RP, Mooz J, Anderson CL et al. IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. Embo J 2011; 31: 14–28.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007; 131: 669–681.

    Article  CAS  PubMed  Google Scholar 

  27. Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, Brennwald PJ et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 2010; 12: 477–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haubert D, Gharib N, Rivero F, Wiegmann K, Hosel M, Kronke M et al. PtdIns(4,5)P-restricted plasma membrane localization of FAN is involved in TNF-induced actin reorganization. Embo J 2007; 26: 3308–3321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kant S, Swat W, Zhang S, Zhang ZY, Neel BG, Flavell RA et al. TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway. Genes Dev 2011; 25: 2069–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C . Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 2008; 87: 649–667.

    Article  CAS  PubMed  Google Scholar 

  31. Iden S, Collard JG . Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 2008; 9: 846–859.

    Article  CAS  PubMed  Google Scholar 

  32. Etienne-Manneville S . Cdc42--the centre of polarity. J Cell Sci 2004; 117: 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  33. Stengel KR, Zheng Y . Essential role of cdc42 in ras-induced transformation revealed by gene targeting. PLoS One 2012; 7: e37317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Makrodouli E, Oikonomou E, Koc M, Andera L, Sasazuki T, Shirasawa S et al. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study. Mol Cancer 2011; 10: 118–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng CM, Li H, Gasman S, Huang J, Schiff R, Chang EC . Compartmentalized Ras proteins transform NIH 3T3 cells with different efficiencies. Mol Cell Biol 2011; 31: 983–997.

    Article  CAS  PubMed  Google Scholar 

  36. Qiu RG, Abo A, McCormick F, Symons M . Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol Cell Biol 1997; 17: 3449–3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reymond N, Im JH, Garg R, Vega FM, Borda d'Agua B, Riou P et al. Cdc42 promotes transendothelial migration of cancer cells through beta1 integrin. The Journal of cell biology. [Research Support, Non-U.S. Gov't] 2012; 199: 653–668.

    CAS  Google Scholar 

  38. Gadea G, Roger L, Anguille C, de Toledo M, Gire V, Roux P . TNFalpha induces sequential activation of Cdc42- and p38/p53-dependent pathways that antagonistically regulate filopodia formation. J Cell Sci 2004; 117: 6355–6364.

    Article  CAS  PubMed  Google Scholar 

  39. Yang L, Wang L, Zheng Y . Gene targeting of Cdc42 and Cdc42GAP affirms the critical involvement of Cdc42 in filopodia induction, directed migration, and proliferation in primary mouse embryonic fibroblasts. Mol Biol Cell 2006; 17: 4675–4685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Allen WE, Jones GE, Pollard JW, Ridley AJ . Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 1997; 110: 707–720.

    CAS  PubMed  Google Scholar 

  41. Fortin SP, Ennis MJ, Schumacher CA, Zylstra-Diegel CR, Williams BO, Ross JT et al. Cdc42 and the guanine nucleotide exchange factors Ect2 and trio mediate Fn14-induced migration and invasion of glioblastoma cells. Mol Cancer Res 2012; 10: 958–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boulter E, Estrach S, Garcia-Mata R, Feral CC . Off the beaten paths: alternative and crosstalk regulation of Rho GTPases. FASEB J. 2012; 26: 469–479.

    Article  CAS  PubMed  Google Scholar 

  43. Geisbrecht ER, Montell DJ . A role for drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 2004; 118: 111–125.

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Zhang D, Luo W, Yu Y, Yu J, Li J et al. X-linked inhibitor of apoptosis protein (XIAP) mediates cancer cell motility via Rho GDP dissociation inhibitor (RhoGDI)-dependent regulation of the cytoskeleton. J Biol Chem 2011; 286: 15630–15640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhuang M, Guan S, Wang H, Burlingame AL, Wells JA . Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the neddylator. Mol Cell 2013; 49: 273–282.

    Article  CAS  PubMed  Google Scholar 

  46. Dogan T, Harms GS, Hekman M, Karreman C, Oberoi TK, Alnemri ES et al. X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility. Nat Cell Biol 2008; 10: 1447–1455.

    Article  CAS  PubMed  Google Scholar 

  47. Hehnly H, Xu W, Chen JL, Stamnes M . Cdc42 regulates microtubule-dependent golgi positioning. Traffic 2010; 11: 1067–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mace PD, Smits C, Vaux DL, Silke J, Day CL . Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol 2010; 400: 8–15.

    Article  CAS  PubMed  Google Scholar 

  49. Grandclement C, Pallandre JR, Valmary Degano S, Viel E, Bouard A, Balland J et al. Neuropilin-2 expression promotes TGF-beta1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PLoS One 2011; 6: e20444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr J Silke, Dr E Lemichez, Dr S Gasman, Dr CL Day, Dr S Ansieu, Dr R Weil and S Monier for kindly providing plasmids and cell lines. We are grateful to Lydie Desoche, Aziza Aznague, Cedric Seignez and Benoit Simon (FEMTO-ST, CLIPP platform) for their technical assistance. We thank A Bouchot and B Gasquet (CellImaP Imagery Facility), A Hammann (Cytometry platform), V Saint-Giorgio (Animal Facility), A Oudot and B Collin (Precilinal imagery platform, Georges-François Leclerc Center) for the use of the imagery, cytometry and animal facilities. We thank P Meier, K Rajalingam, J Bréard, M David and S Ansieu for helpful discussions. This work was supported by grants from the ‘Comité de Côte d’Or of the Ligue Contre le Cancer’ (LD), the ’Association pour la Recherche sur le Cancer’ (ARC to LD), the Association ‘Cent pour sang la Vie’ (LD), the European Union and the ‘Conseil Régional de Bourgogne’, a French Government grant managed by the French National Research Agency under the program ‘Investissements d’Avenir’ with reference ANR-11-LABX-0021’, and fellowships from the ‘Ministère de l’Enseignement Supérieur et de la Recherche’ of France (to AM, JB, JC), ARC (JC) and the ‘Société Française d’Hématologie’ (AM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Dubrez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

AM and JB performed most of the experiments and analysed the data. JB performed the in vivo experiment and analysis. JC performed additional experiments and data analysis. CP and AM contributed to the in vivo analysis. SG and WB performed the biacore experiments and analysis. MS and JB provided valuable materials and expert evaluation. ES provided expert evaluation and corrected the paper and LD conceived and supervised the project, analysed the data and wrote the paper with input from all authors.

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marivin, A., Berthelet, J., Cartier, J. et al. cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation. Oncogene 33, 5534–5545 (2014). https://doi.org/10.1038/onc.2013.499

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.499

Keywords

This article is cited by

Search

Quick links