Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Id4 suppresses MMP2-mediated invasion of glioblastoma-derived cells by direct inactivation of Twist1 function

Abstract

Tumor cell invasion is a major contributor to cancer morbidity, and is of particular importance in patients with glioblastoma multiforme (GBM), the highest grade and most aggressive primary brain tumor. Tumor cell invasion and the expression of matrix metalloproteinases (MMPs), which are required for GBM invasion, are enhanced by inhibitor of DNA binding (Id) gene family members, Id1, Id2 and Id3, which can be highly expressed in glioma. Id4 is expressed in GBM at more variable levels than these other family members and we sought to determine its role in invasion. We found, unexpectedly, that invasion was dramatically inhibited in cells expressing Id4 as a result of decreased MMP2, a secreted proteinase key for brain tumor invasion. We demonstrate that Id4 decreased MMP2 expression by a direct inhibitory interaction with Twist1, a basic helix-loop-helix transcription factor known to increase MMP2 expression. Importantly, using data from The Cancer Genome Atlas, we show that Id4 expression correlates with survival of glioblastoma patients and inversely correlates with MMP2 expression. These data suggest that the upregulation of MMP2 resulting from decreased Id4 expression in GBM may contribute to the morbidity and mortality of GBM patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161–174.

    Article  CAS  Google Scholar 

  2. Brinckerhoff CE, Matrisian LM . Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 2002; 3: 207–214.

    Article  CAS  Google Scholar 

  3. Nakamura H, Fujii Y, Inoki I, Sugimoto K, Tanzawa K, Matsuki H et al. Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J Biol Chem 2000; 275: 38885–38890.

    Article  CAS  Google Scholar 

  4. Zhang Y, Klassen HJ, Tucker BA, Perez MT, Young MJ . CNS progenitor cells promote a permissive environment for neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism. J Neurosci 2007; 27: 4499–4506.

    Article  CAS  Google Scholar 

  5. Rao JS . Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 2003; 3: 489–501.

    Article  CAS  Google Scholar 

  6. Choe GY, Park JK, Jouben-Steele L, Kremen TJ, Liau LM, Vinters HV et al. Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin Cancer Res 2002; 8: 2894–2901.

    CAS  PubMed  Google Scholar 

  7. Forsyth P, Wong H, Laing TD, Rewcastle N, Morris D, Muzik H et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 1999; 79: 1828.

    Article  CAS  Google Scholar 

  8. Kargiotis O, Chetty C, Gondi CS, Tsung AJ, Dinh DH, Gujrati M et al. Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene 2008; 27: 4830–4840.

    Article  CAS  Google Scholar 

  9. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN et al. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis 1996; 14: 35–42.

    Article  CAS  Google Scholar 

  10. Fong S, Itahana Y, Sumida T, Singh J, Coppe J-P, Liu Y et al. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci USA 2003; 100: 13543–13548.

    Article  CAS  Google Scholar 

  11. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 1999; 401: 670–677.

    Article  CAS  Google Scholar 

  12. Ruzinova MB, Schoer RA, Gerald W, Egan JE, Pandolfi PP, Rafii S et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer cell 2003; 4: 277–289.

    Article  CAS  Google Scholar 

  13. Tsunedomi R, Iizuka N, Tamesa T, Sakamoto K, Hamaguchi T, Somura H et al. Decreased ID2 promotes metastatic potentials of hepatocellular carcinoma by altering secretion of vascular endothelial growth factor. Clin Cancer Res 2008; 14: 1025–1031.

    Article  CAS  Google Scholar 

  14. Itahana Y, Singh J, Sumida T, Coppe J-P, Parrinello S, Bennington JL et al. Role of Id-2 in the maintenance of a differentiated and noninvasive phenotype in breast cancer cells. Cancer Res 2003; 63: 7098–7105.

    CAS  PubMed  Google Scholar 

  15. Coma S, Amin DN, Shimizu A, Lasorella A, Iavarone A, Klagsbrun M . Id2 promotes tumor cell migration and invasion through transcriptional repression of semaphorin 3F. Cancer Res 2010; 70: 3823–3832.

    Article  CAS  Google Scholar 

  16. Meng Y, Gu C, Wu Z, Zhao Y, Si Y, Fu X et al. Id2 promotes the invasive growth of MCF-7 and SKOV-3 cells by a novel mechanism independent of dimerization to basic helix-loop-helix factors. BMC cancer 2009; 9: 75.

    Article  Google Scholar 

  17. Asirvatham AJ, Carey JP, Chaudhary J . ID1‐, ID2‐, and ID3‐regulated gene expression in E2A positive or negative prostate cancer cells. Prostate 2007; 67: 1411–1420.

    Article  CAS  Google Scholar 

  18. Zeng W, Rushing EJ, Hartmann DP, Azumi N . Increased inhibitor of differentiation 4 (Id4) expression in glioblastoma: a tissue microarray study. J Cancer 2010; 1: 1.

    Article  CAS  Google Scholar 

  19. Kuzontkoski P, Mulligan-Kehoe M, Harris B, Israel M . Inhibitor of DNA binding-4 promotes angiogenesis and growth of glioblastoma multiforme by elevating matrix GLA levels. Oncogene 2010; 29: 3793–3802.

    Article  CAS  Google Scholar 

  20. Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, Ohno-Machado L et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer cell 2011; 19: 372–386.

    Article  CAS  Google Scholar 

  21. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  Google Scholar 

  22. Sun T, Zhao N, Zhao Xl, Gu Q, Zhang Sw, Che N et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 2010; 51: 545–556.

    Article  CAS  Google Scholar 

  23. Zhao Xl, Sun T, Che N, Sun D, Zhao N, Dong Xy et al. Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelial‐mesenchymal transition regulator Twist1. J Cell Mol Med 2011; 15: 691–700.

    Article  CAS  Google Scholar 

  24. Mikheeva SA, Mikheev AM, Petit A, Beyer R, Oxford RG, Khorasani L et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol Cancer 2010; 9: 194.

    Article  Google Scholar 

  25. Elias MC, Tozer KR, Silber JR, Mikheeva S, Deng M, Morrison RS et al. TWIST is expressed in human gliomas and promotes invasion. Neoplasia 2005; 7: 824.

    Article  CAS  Google Scholar 

  26. Friedl P, Wolf K . Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3: 362–374.

    Article  CAS  Google Scholar 

  27. Wang M, Wang T, Liu S, Yoshida D, Teramoto A . The expression of matrix metalloproteinase-2 and-9 in human gliomas of different pathological grades. Brain Tumor Pathol 2003; 20: 65–72.

    Article  Google Scholar 

  28. Kappert K, Meyborg H, Baumann B, Furundzija V, Kaufmann J, Graf K et al. Integrin cleavage facilitates cell surface-associated proteolysis required for vascular smooth muscle cell invasion. Int J Biochem Cell Biol 2009; 41: 1511–1517.

    Article  CAS  Google Scholar 

  29. Shelton EL, Yutzey KE . Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol 2008; 317: 282–295.

    Article  CAS  Google Scholar 

  30. Nieto MA . The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 2011; 27: 347–376.

    Article  CAS  Google Scholar 

  31. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer cell 2010; 17: 98.

    Article  CAS  Google Scholar 

  32. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 2009; 463: 318–325.

    Article  Google Scholar 

  33. Kophengnavong T, Michnowicz JE, Blackwell TK . Establishment of distinct MyoD, E2A, and twist DNA binding specificities by different basic region-DNA conformations. Mol Cell Biol 2000; 20: 261–272.

    Article  CAS  Google Scholar 

  34. Sakurai D, Tsuchiya N, Yamaguchi A, Okaji Y, Tsuno NH, Kobata T et al. Crucial role of inhibitor of DNA binding/differentiation in the vascular endothelial growth factor-induced activation and angiogenic processes of human endothelial cells. J Immunol 2004; 173: 5801–5809.

    Article  CAS  Google Scholar 

  35. Ling YX, Tao J, Fang SF, Hui Z, Fang QR . Downregulation of Id1 by small interfering RNA in prostate cancer PC3 cells in vivo and in vitro. Eur J Canver Prev 2011; 20: 9–17.

    Article  CAS  Google Scholar 

  36. Desprez P-Y, Lin CQ, Thomasset N, Sympson CJ, Bissell MJ, Campisi J . A novel pathway for mammary epithelial cell invasion induced by the helix-loop-helix protein Id-1. Mol Cell Biol 1998; 18: 4577–4588.

    Article  CAS  Google Scholar 

  37. Chan ASW, Tsui WY, Chen X, Chu KM, Chan TL, Chan ASY et al. Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma. Oncogene 2003; 22: 6946–6953.

    Article  CAS  Google Scholar 

  38. Noetzel E, Veeck J, Niederacher D, Galm O, Horn F, Hartmann A et al. Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer. BMC cancer 2008; 8: 154.

    Article  Google Scholar 

  39. Sharma P, Chinaranagari S, Patel D, Carey J, Chaudhary J . Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer. Cancer Med 2012; 1: 176–186.

    Article  CAS  Google Scholar 

  40. Umetani N, Takeuchi H, Fujimoto A, Shinozaki M, Bilchik AJ, Hoon DS . Epigenetic inactivation of ID4 in colorectal carcinomas correlates with poor differentiation and unfavorable prognosis. Clin Cancer Res 2004; 10: 7475–7483.

    Article  CAS  Google Scholar 

  41. García-Baquero R, Puerta P, Beltran M, Alvarez M, Sacristan R, Alvarez-Ossorio JL et al. Methylation of a novel panel of tumor suppressor genes in urine moves forward non-invasive diagnosis and prognosis in bladder cancer: a two center prospective study. J Urol 2013; 190: 723–730.

    Article  Google Scholar 

  42. Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev 2011; 25: 2594–2609.

    Article  CAS  Google Scholar 

  43. Smit MA, Geiger TR, Song J-Y, Gitelman I, Peeper DS . A Twist-Snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis. Mol Cell Biol 2009; 29: 3722–3737.

    Article  CAS  Google Scholar 

  44. Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ, Yang J . Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res 2011; 71: 245–254.

    Article  CAS  Google Scholar 

  45. Israel MA, Andrés-Barquín P, Hernández M . Id genes in nervous system development. Histol Histopathol 2000; 15: 603–618.

    PubMed  Google Scholar 

  46. Soroceanu L, Murase R, Limbad C, Singer E, Allison J, Adrados I et al. Id-1 Is a Key Transcriptional Regulator of Glioblastoma Aggressiveness and a Novel Therapeutic Target. Cancer Res 2013; 73: 1559–1569.

    Article  CAS  Google Scholar 

  47. Tatenhorst L, Püttmann S, Senner V, Paulus W . Genes associated with fast glioma cell migration in vitro and in vivo. Brain Pathol 2005; 15: 46–54.

    Article  CAS  Google Scholar 

  48. Langlands K, Yin X, Anand G, Prochownik EV . Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J Biol Chem 1997; 272: 19785–19793.

    Article  CAS  Google Scholar 

  49. Chen B, Han BH, Sun X-H, Lim RW . Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function. Nucleic Acids Res 1997; 25: 423–430.

    Article  CAS  Google Scholar 

  50. Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu Y-Z et al. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet 2005; 37: 265–274.

    Article  CAS  Google Scholar 

  51. Umetani N, Mori T, Koyanagi K, Shinozaki M, Kim J, Giuliano AE et al. Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 2005; 24: 4721–4727.

    Article  CAS  Google Scholar 

  52. Chen S-S, Claus R, Lucas DM, Yu L, Qian J, Ruppert AS et al. Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL. Blood 2011; 117: 862–871.

    Article  CAS  Google Scholar 

  53. Niola F, Zhao X, Singh D, Sullivan R, Castano A, Verrico A et al. Mesenchymal high-grade glioma is maintained by the ID-RAP1 axis. J Clin Invest 2013; 123: 405.

    Article  CAS  Google Scholar 

  54. Murad JM, Place CS, Ran C, Hekmatyar SK, Watson NP, Kauppinen RA et al. Inhibitor of DNA binding 4 (ID4) regulation of adipocyte differentiation and adipose tissue formation in mice. J Biol Chem 2010; 285: 24164–24173.

    Article  CAS  Google Scholar 

  55. Nelson JD, Denisenko O, Bomsztyk K . Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 2006; 1: 179–185.

    Article  CAS  Google Scholar 

  56. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  Google Scholar 

  57. Clark IM . Matrix Metalloproteinase Protocols. Springer, 2001.

    Google Scholar 

  58. Paolella BR, Havrda MC, Mantani A, Wray CM, Zhang Z, Israel MA . p53 directly represses Id2 to inhibit the proliferation of neural progenitor cells. Stem Cells 2011; 29: 1090–1101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Constance Brinckerhoff for assisting in the development of the project and for providing antibodies to MMP1, 3 and 13. We are grateful for all the Israel Laboratory members for stimulating discussion, especially Dr Zhonghua Zhang for his expert opinions. We thank Dr Constance Brinckerhoff, Dr Zhonghua Zhang, Pranam Chatterjee and Ilenna Jones for their help on preparing the manuscript. We would like to thank Kenneth A Orndorff from the shared fluorescence imaging core at the Norris Cotton Cancer Center for his expert advice on confocal images. We thank Dr Christopher Dant and Ms Tabatha Richardson at Dartmouth for their editorial advice. This work is supported by the Hitchcock Foundation (GJR), the Jordan and Kyra Memorial Foundation (MAI) and the Theodora B. Betz Foundation (MAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Israel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahme, G., Israel, M. Id4 suppresses MMP2-mediated invasion of glioblastoma-derived cells by direct inactivation of Twist1 function. Oncogene 34, 53–62 (2015). https://doi.org/10.1038/onc.2013.531

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.531

Keywords

This article is cited by

Search

Quick links