Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase

Abstract

Mdm2 is a critical negative regulator of the tumor suppressor protein p53. Mdm2 is an E3 ligase whose overexpression leads to functional inactivation of p53. Mdm2 protein stability is regulated by several mechanisms including RING (Really Interesting New Gene) domain-mediated autoubiquitination. Here we report biochemical identification of NEDD4-1 as an E3 ligase for Mdm2 that contributes to the regulation of Mdm2 protein stability in cells. NEDD4-1 was identified from Jurkat cytosolic fractions using an enzyme-dead Mdm2 mutant protein as a substrate for in vitro E3 ligase assays. We show that lysates from Nedd4-1 knockout (KO) mouse embryonic fibroblasts (MEFs) have significantly diminished E3 ligase activity toward Mdm2 compared with lysates from wild-type (WT) MEFs. Recombinant NEDD4-1 promotes Mdm2 ubiquitination in vitro in a concentration- and time-dependent manner. In cells, NEDD4-1 physically interacts with Mdm2 via the RING domain of Mdm2. Overexpression of NEDD4-1, but not an enzyme-dead NEDD4-1CS mutant, increases ubiquitination of Mdm2. NEDD4-1 catalyzes the formation of K63-type polyubiquitin chains on Mdm2 that are distinct from K48-type polyubiquitination chains mediated by the Mdm2/MdmX complex. Importantly, K63-type polyubiquitination by NEDD4-1 competes with K48-type polyubiquitination on Mdm2 in cells. As a result, NEDD4-1-mediated ubiquitination stabilizes Mdm2. NEDD4-1 knockdown reduces the t1/2 (half-life) of endogenous Mdm2 from 20 to 12 min in U2OS cells. Nedd4-1 KO MEFs manifest increased p53 levels and activity, a more robust DNA damage response and increased G1 arrest compared with WT MEFs. Similarly, NEDD4-1 knockdown in WT-p53-bearing cells increases basal p53 levels and activity in an Mdm2-dependent manner, causes stronger p53 responses to DNA damage and results in p53-dependent growth inhibition compared with corresponding NEDD4-1-proficient control cells. This study identifies NEDD4-1 as a novel component of the p53/Mdm2 regulatory feedback loop that controls p53 activity during stress responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Levine AJ, Oren M . The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9: 749–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wade M, Wang YV, Wahl GM . The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010; 20: 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang JY, Zong CS, Xia W, Wei Y, Ali-Seyed M, Li Z et al. MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol 2006; 26: 7269–7282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khor LY, Bae K, Paulus R, Al-Saleem T, Hammond ME, Grignon DJ et al. MDM2 and Ki-67 predict for distant metastasis and mortality in men treated with radiotherapy and androgen deprivation for prostate cancer: RTOG 92-02. J Clin Oncol 2009; 27: 3177–3184.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhou M, Yeager AM, Smith SD, Findley HW . Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene. Blood 1995; 85: 1608–1614.

    CAS  PubMed  Google Scholar 

  6. Marks DI, Kurz BW, Link MP, Ng E, Shuster JJ, Lauer SJ et al. High incidence of potential p53 inactivation in poor outcome childhood acute lymphoblastic leukemia at diagnosis. Blood 1996; 87: 1155–1161.

    CAS  PubMed  Google Scholar 

  7. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM . Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275: 8945–8951.

    Article  CAS  PubMed  Google Scholar 

  8. Lai Z, Ferry KV, Diamond MA, Wee KE, Kim YB, Ma J et al. Human mdm2 mediates multiple mono-ubiquitination of p53 by a mechanism requiring enzyme isomerization. J Biol Chem 2001; 276: 31357–31367.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Wang J, Jiang X . MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J Biol Chem 286: 23725–23734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Michael D, de Murcia G, Oren M . p53 Activation by nitric oxide involves down-regulation of Mdm2. J Biol Chem 2002; 277: 15697–15702.

    Article  CAS  PubMed  Google Scholar 

  11. Stommel JM, Wahl GM . Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 2004; 23: 1547–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS et al. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer cell 2007; 12: 355–366.

    Article  CAS  PubMed  Google Scholar 

  13. Linares LK, Kiernan R, Triboulet R, Chable-Bessia C, Latreille D, Cuvier O et al. Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 2007; 9: 331–338.

    Article  CAS  PubMed  Google Scholar 

  14. Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S et al. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 2010; 18: 147–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ciechanover A . The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 1998; 17: 7151–7160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen ZJ, Sun LJ . Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009; 33: 275–286.

    Article  CAS  PubMed  Google Scholar 

  17. Mosesson Y, Chetrit D, Schley L, Berghoff J, Ziv T, Carvalho S et al. Monoubiquitinylation regulates endosomal localization of Lst2, a negative regulator of EGF receptor signaling. Dev Cell 2009; 16: 687–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oren M . Regulation of the p53 tumor suppressor protein. J Biol Chem 1999; 274: 36031–36034.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Inuzuka H, Zhong J, Fukushima H, Wan L, Liu P et al. DNA damage-induced activation of ATM promotes beta-TRCP-mediated Mdm2 ubiquitination and destruction. Oncotarget 2012; 3: 1026–1035.

    PubMed  PubMed Central  Google Scholar 

  20. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004; 431: 873–878.

    Article  CAS  PubMed  Google Scholar 

  21. Zhong Q, Gao W, Du F, Wang X . Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 2005; 121: 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 2007; 128: 129–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amodio N, Scrima M, Palaia L, Salman AN, Quintiero A, Franco R et al. Oncogenic role of the E3 ubiquitin ligase NEDD4-1, a PTEN negative regulator, in non-small-cell lung carcinomas. Am J Pathol 2010; 177: 2622–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eide PW, Cekaite L, Danielsen SA, Eilertsen IA, Kjenseth A, Fykerud TA et al. NEDD4 is overexpressed in colorectal cancer and promotes colonic cell growth independently of the PI3K/PTEN/AKT pathway. Cell Signal 2013; 25: 12–18.

    Article  CAS  PubMed  Google Scholar 

  25. Li Q, Lozano G . Molecular pathways: targeting mdm2 and mdm4 in cancer therapy. Clin Cancer Res 2013; 19: 34–41.

    Article  PubMed  Google Scholar 

  26. Fan CD, Lum MA, Xu C, Black JD, Wang X . Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. J Biol Chem 2013; 288: 1674–1684.

    Article  CAS  PubMed  Google Scholar 

  27. Dai B, Pieper RO, Li D, Wei P, Liu M, Woo SY et al. FoxM1B regulates NEDD4-1 expression, leading to cellular transformation and full malignant phenotype in immortalized human astrocytes. Cancer Res 2010; 70: 2951–2961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Montes de Oca Luna R, Wagner DS, Lozano G . Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206.

    Article  CAS  PubMed  Google Scholar 

  29. Chou TC . Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58: 621–681.

    Article  CAS  PubMed  Google Scholar 

  30. Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL . Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ 2008; 15: 841–848.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by start-p funds from Roswell Park Cancer Institute (XW). The Roswell Park Core Grant CA16056 is also gratefully acknowledged. We sincerely thank Dr Baoli Yang for providing Nedd4-1−/− and parental MEFs; Dr Yosef Shiloh and Dr Jiandong Chen and Dr Dirk P Bohmann for providing DNA constructs; Dr Moshe Oren for antibodies, Bert Vogelstein for providing HCT116-p53−/−cells and Dr Gigi Lozano for p53/Mdm2 DKO MEFs, respectively. We also thank Dr David Goodrich and other faculty colleagues at the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Fan, C. & Wang, X. Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene 34, 281–289 (2015). https://doi.org/10.1038/onc.2013.557

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.557

Keywords

This article is cited by

Search

Quick links