Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

KSHV vCyclin counters the senescence/G1 arrest response triggered by NF-κB hyperactivation

Abstract

Many oncogenic viruses activate nuclear factor-κB (NF-κB) as a part of their replicative cycles. We have shown recently that persistent and potentially oncogenic activation of NF-κB by the human T-lymphotropic virus 1 (HTLV-1) oncoprotein Tax immediately triggers a host senescence response mediated by cyclin-dependent kinase inhibitors: p21CIP1/WAF1 (p21) and p27Kip1 (p27) Here we demonstrate that RelA/NF-κB activation by Kaposi sarcoma herpesvirus (KSHV) latency protein vFLIP also leads to p21/p27 upregulation and G1 cell cycle arrest. Remarkably, KSHV vCyclin, another latency protein coexpressed with vFLIP from a bicistronic latency-specific mRNA, was found to prevent the senescence and G1 arrest induced by HTLV-1 Tax and vFLIP, respectively. This is because of the known ability of vCyclin/cyclin-dependent kinase 6 complex to resist p21 and p27 inhibition and cause p27 degradation. In KSHV-transformed BCBL-1 cells, sustained vFLIP expression with small hairpin RNAs-mediated vCyclin depletion resulted in G1 arrest. The functional interdependence of vFLIP and vCyclin explains why they are cotranslated from the same viral mRNA. Importantly, deregulation of the G1 cyclin-dependent kinase can facilitate chronic I-κB kinases/NF-κB activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ganem D . KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest 2010; 120: 939–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dittmer D, Lagunoff M, Renne R, Staskus K, Haase A, Ganem D . A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus. J Virol 1998; 72: 8309–8315.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ganem D . KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol 2006; 1: 273–296.

    Article  CAS  PubMed  Google Scholar 

  4. Low W, Harries M, Ye H, Du MQ, Boshoff C, Collins M . Internal ribosome entry site regulates translation of Kaposi’s sarcoma-associated herpesvirus FLICE inhibitory protein. J Virol 2001; 75: 2938–2945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fujimuro M, Hayward SD, Yokosawa H . Molecular piracy: manipulation of the ubiquitin system by Kaposi's sarcoma-associated herpesvirus. Rev Med Virol 2007; 17: 405–422.

    Article  CAS  PubMed  Google Scholar 

  6. Hayward SD, Liu J, Fujimuro M . Notch and Wnt signaling: mimicry and manipulation by gamma herpesviruses. Sci STKE 2006; 335: re4.

    Google Scholar 

  7. Liu J, Martin HJ, Liao G, Hayward SD . The Kaposi’s sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J Virol 2007; 81: 10451–10459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Verschuren EW, Jones N, Evan GI . The cell cycle and how it is steered by Kaposi's sarcoma-associated herpesvirus cyclin. J Gen Virol 2004; 85 (Part 6): 1347–1361.

    Article  CAS  PubMed  Google Scholar 

  9. Rivas C, Thlick AE, Parravicini C, Moore PS, Chang Y . Kaposi’s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 2001; 75: 429–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 1998; 7: 1231–1240.

    Article  Google Scholar 

  11. Sun SC, Ballard DW . Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases. Oncogene 1999; 49: 6948–6958.

    Article  Google Scholar 

  12. Bagneris C, Ageichik AV, Cronin N, Wallace B, Collins M, Boshoff C et al. Crystal structure of a vFlip-IKKgamma complex: insights into viral activation of the IKK signalosome. Mol Cell 2008; 30: 620–631.

    Article  CAS  PubMed  Google Scholar 

  13. Field N, Low W, Daniels M, Howell S, Daviet L, Boshoff C et al. KSHV vFLIP binds to IKK-gamma to activate IKK. J Cell Sci 2003; 116 (Part 18): 3721–3728.

    Article  CAS  PubMed  Google Scholar 

  14. Chu ZL, Shin YA, Yang JM, Di Donato JA, Ballard DW . IKKgamma mediates the interaction of cellular IkappaB kinases with the tax transforming protein of human T cell leukemia virus type 1. J Biol Chem 1999; 274: 15297–15300.

    Article  CAS  PubMed  Google Scholar 

  15. Jin DY, Giordano V, Kibler KV, Nakano H, Jeang KT . Role of adapter function in oncoprotein-mediated activation of NF-kappaB. Human T-cell leukemia virus type I Tax interacts directly with IkappaB kinase gamma. J Biol Chem 1999; 274: 17402–17405.

    Article  CAS  PubMed  Google Scholar 

  16. Xiao G, Sun SC . Activation of IKKalpha and IKKbeta through their fusion with HTLV-I tax protein. Oncogene 2000; 19: 5198–5203.

    Article  CAS  PubMed  Google Scholar 

  17. Grossman WJ, Kimata JT, Wong FH, Zutter M, Ley TJ, Ratner L . Development of leukemia in mice transgenic for the tax gene of human T-cell leukemia virus type I. Proc Natl Acad Sci USA 1995; 92: 1057–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsumoto K, Shibata H, Fujisawa JI, Inoue H, Hakura A, Tsukahara T et al. Human T-cell leukemia virus type 1 Tax protein transforms rat fibroblasts via two distinct pathways. J Virol 1997; 71: 4445–4451.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamaoka S, Inoue H, Sakurai M, Sugiyama T, Hazama M, Yamada T et al. Constitutive activation of NF-kappa B is essential for transformation of rat fibroblasts by the human T-cell leukemia virus type I Tax protein. EMBO J 1996; 15: 873–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasegawa H, Sawa H, Lewis MJ, Orba Y, Sheehy N, Yamamoto Y et al. Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 2006; 12: 466–472.

    Article  CAS  PubMed  Google Scholar 

  21. Guasparri I, Keller SA, Cesarman E . KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 2004; 199: 993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhi H, Yang L, Kuo YL, Ho YK, Shih HM, Giam CZ . NF-kappaB hyper-activation by HTLV-1 Tax induces cellular senescence, but can be alleviated by the viral anti-sense protein HBZ. PLoS Pathogen 2011; 7: e1002025.

    Article  CAS  Google Scholar 

  23. Swanton C, Mann DJ, Fleckenstein B, Neipel F, Peters G, Jones N . Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 1997; 390: 184–187.

    Article  CAS  PubMed  Google Scholar 

  24. Mann DJ, Child ES, Swanton C, Laman H, Jones N . Modulation of p27(Kip1) levels by the cyclin encoded by Kaposi’s sarcoma-associated herpesvirus. EMBO J 1999; 18: 654–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuo YL, Giam CZ . Activation of the anaphase promoting complex by HTLV-1 tax leads to senescence. EMBO J 2006; 25: 1741–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grossmann C, Podgrabinska S, Skobe M, Ganem D . Activation of NF-kappaB by the latent vFLIP gene of Kaposi's sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype. J Virol 2006; 80: 7179–7185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang L, Liu M, Merling R, Giam CZ . Versatile reporter systems show that transactivation by human T-cell leukemia virus type 1 Tax occurs independently of chromatin remodeling factor BRG1. J Virol 2006; 80: 7459–7468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matta H, Chaudhary PM . Activation of alternative NF-kappa B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 beta-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci USA 2004; 101: 9399–9404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shimizu A, Baratchian M, Takeuchi Y, Escors D, Macdonald D, Barrett T et al. Kaposi’s sarcoma-associated herpesvirus vFLIP and human T cell lymphotropic virus type 1 Tax oncogenic proteins activate I{kappa}B kinase subunit {gamma} by different mechanisms independent of the physiological cytokine-induced pathways. J Virol 2011; 85: 7444–7448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang L, Kotomura N, Ho YK, Zhi H, Bixler S, Schell MJ et al. Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax. J Virol 2011; 85: 3001–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bieleski L, Talbot SJ . Kaposi's sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site. J Virol 2001; 75: 1864–1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grundhoff A, Ganem D . Mechanisms governing expression of the v-FLIP gene of Kaposi's sarcoma-associated herpesvirus. J Virol 2001; 75: 1857–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR et al. FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 2009; 11: 1355–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leidal AM, Cyr DP, Hill RJ, Lee PW, McCormick C . Subversion of autophagy by Kaposi's sarcoma-associated herpesvirus impairs oncogene-induced senescence. Cell Host Microbe 2012; 11: 167–180.

    Article  CAS  PubMed  Google Scholar 

  36. Koopal S, Furuhjelm JH, Jarviluoma A, Jaamaa S, Pyakurel P, Pussinen C et al. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathogen 2007; 3: 1348–1360.

    Article  CAS  Google Scholar 

  37. Farrell PJ, Allan GJ, Shanahan F, Vousden KH, Crook T . P53 is frequently mutated in Burkitt’s lymphoma cell lines. EMBO J 1991; 10: 2879–2887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ojala PM, Tiainen M, Salven P, Veikkola T, Castanos-Velez E, Sarid R et al. Kaposi's sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res 1999; 59: 4984–4989.

    CAS  PubMed  Google Scholar 

  39. Jarviluoma A, Koopal S, Rasanen S, Makela TP, Ojala PM . KSHV viral cyclin binds to p27KIP1 in primary effusion lymphomas. Blood 2004; 104: 3349–3354.

    Article  PubMed  Google Scholar 

  40. Verschuren EW, Klefstrom J, Evan GI, Jones N . The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2002; 2: 229–241.

    Article  CAS  PubMed  Google Scholar 

  41. Liu M, Yang L, Zhang L, Liu B, Merling R, Xia Z et al. Human T-cell leukemia virus type 1 infection leads to arrest in the G1 phase of the cell cycle. J Virol 2008; 82: 8442–8455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cereseto A, Diella F, Mulloy JC, Cara A, Michieli P, Grassmann R et al. P53 functional impairment and high p21waf1/cip1 expression in human t-cell lymphotropic/leukemia virus type i-transformed t cells. Blood 1996; 88: 1551–1560.

    CAS  PubMed  Google Scholar 

  43. Cereseto A, Washington PR, Rivadeneira E, Franchini G . Limiting amounts of p27Kip1 correlates with constitutive activation of cyclin E-CDK2 complex in HTLV-I-transformed T-cells. Oncogene 1999; 18: 2441–2450.

    Article  CAS  PubMed  Google Scholar 

  44. Yamada Y, Hatta Y, Murata K, Sugawara K, Ikeda S, Mine M et al. Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T-cell leukemia. J Clin Oncol 1997; 15: 1778–1785.

    Article  CAS  PubMed  Google Scholar 

  45. Hatta Y, Koeffler HP . Role of tumor suppressor genes in the development of adult T cell leukemia/lymphoma (ATLL). J Virol 2002; 16: 1069–1085.

    CAS  Google Scholar 

  46. Oshiro A, Tagawa H, Ohshima K, Karube K, Uike N, Tashiro Y et al. Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood 2006; 107: 4500–4507.

    Article  CAS  PubMed  Google Scholar 

  47. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002; 99: 4079–4086.

    Article  CAS  PubMed  Google Scholar 

  48. Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 1996; 93: 14862–14867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C . Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 2005; 105: 2510–2518.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Mary Collins, Johnan Kaleeba and Emmy Verschuren for the vFLIP antibody, vFLIP cDNA and vCyclin expression plasmid, respectively. This work was supported by grants from the National Institutes of Health (R01CA140963 and RO1CA115884) and the USU intramural research program (RO73NV).

Accession numbers

The GENBANK accession numbers or ID numbers for genes encoding the proteins described in this article are: KSHV vCyclin, U93872; vFLIP, U90534; HTLV-1 Tax, AB038239; p21, NM_000389; p27, NM_004064; Cyclin B1, NM_031966; I-κBα, NM_020529; p100/p52, NM_002502; p105/p50, NM_003998; RelA, NM_021975; RelB, NM_006509; and c-Rel, NM_002908.

Author contributions

HZ and C-ZG designed the experiments and wrote the manuscript. HZ, MAZ and AMDS performed experiments and data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-Z Giam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhi, H., Zahoor, M., Shudofsky, A. et al. KSHV vCyclin counters the senescence/G1 arrest response triggered by NF-κB hyperactivation. Oncogene 34, 496–505 (2015). https://doi.org/10.1038/onc.2013.567

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.567

Keywords

This article is cited by

Search

Quick links