Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic Y641 mutations in EZH2 prevent Jak2/β-TrCP-mediated degradation

Abstract

EZH2 (enhancer of zeste homolog 2) is a critical enzymatic subunit of the polycomb repressive complex 2 (PRC2), which trimethylates histone H3 (H3K27) to mediate gene repression. Somatic mutations, overexpression and hyperactivation of EZH2 have been implicated in the pathogenesis of several forms of cancer. In particular, recurrent gain-of-function mutations targeting EZH2 Y641 occur most frequently in follicular lymphoma and aggressive diffuse large B-cell lymphoma and are associated with H3K27me3 hyperactivation, which contributes to lymphoma pathogenesis. However, the post-translational mechanisms of EZH2 regulation are not completely understood. Here we show that EZH2 is a novel interactor and substrate of the SCF E3 ubiquitin ligase β-TrCP (FBXW1). β-TrCP ubiquitinates EZH2 and Jak2-mediated phosphorylation on Y641 directs β-TrCP-mediated EZH2 degradation. RNA interference-mediated silencing of β-TrCP or inhibition of Jak2 results in EZH2 stabilization with attendant increase in H3K27 trimethylation activity. Importantly, the EZH2Y641 mutants recurrently implicated in lymphoma pathogenesis are unable to bind β-TrCP. Further, endogenous EZH2Y641 mutants in lymphoma cells exhibit increased EZH2 stability and H3K27me3 hyperactivity. Our studies demonstrate that β-TrCP has an important role in controlling H3K27 trimethylation activity and lymphoma pathogenesis by targeting EZH2 for degradation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Piunti A, Pasini D . Epigenetic factors in cancer development: polycomb group proteins. Fut Oncol 2011; 7: 57–75.

    Article  CAS  Google Scholar 

  2. Mills AA . Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer 2010; 10: 669–682.

    Article  CAS  Google Scholar 

  3. Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L et al. Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 2003; 130: 4235–4248.

    Article  CAS  Google Scholar 

  4. Martin-Perez D, Piris MA, Sanchez-Beato M . Polycomb proteins in hematologic malignancies. Blood 2010; 116: 5465–5475.

    Article  CAS  Google Scholar 

  5. Richly H, Aloia L, Di Croce L . Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Dis 2011; 2: e204.

    Article  CAS  Google Scholar 

  6. Sauvageau M, Sauvageau G . Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 2010; 7: 299–313.

    Article  CAS  Google Scholar 

  7. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K . Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 2004; 23: 4061–4071.

    Article  CAS  Google Scholar 

  8. Margueron R, Reinberg D . The polycomb complex PRC2 and its mark in life. Nature 2011; 469: 343–349.

    Article  CAS  Google Scholar 

  9. Simon JA, Kingston RE . Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 2013; 49: 808–824.

    Article  CAS  Google Scholar 

  10. Simon JA, Kingston RE . Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009; 10: 697–708.

    Article  CAS  Google Scholar 

  11. Surface LE, Thornton SR, Boyer LA . Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 2010; 7: 288–298.

    Article  CAS  Google Scholar 

  12. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

    Article  CAS  Google Scholar 

  13. Bodor C, Grossmann V, Popov N, Okosun J, O'Riain C, Tan K et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 2013; 122: 3165–3168.

    Article  CAS  Google Scholar 

  14. Beguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 2013; 23: 677–692.

    Article  CAS  Google Scholar 

  15. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108–112.

    Article  CAS  Google Scholar 

  16. Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ, Raimondi A et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci USA 2013; 110: 7922–7927.

    Article  CAS  Google Scholar 

  17. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012; 8: 890–896.

    Article  CAS  Google Scholar 

  18. Popovic R, Shah MY, Licht JD . Epigenetic therapy of hematological malignancies: where are we now? Ther Adv Hematol 2013; 4: 81–91.

    Article  CAS  Google Scholar 

  19. Sahasrabuddhe AA, Dimri M, Bommi PV, Dimri GP . betaTrCP regulates BMI1 protein turnover via ubiquitination and degradation. Cell Cycle 2011; 10: 1322–1330.

    Article  CAS  Google Scholar 

  20. Zoabi M, Sadeh R, de Bie P, Marquez VE, Ciechanover A . PRAJA1 is a ubiquitin ligase for the polycomb repressive complex 2 proteins. Biochem Biophys Res Commun 2011; 408: 393–398.

    Article  CAS  Google Scholar 

  21. Yu YL, Chou RH, Shyu WC, Hsieh SC, Wu CS, Chiang SY et al. Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke. EMBO Mol Med 2013; 5: 531–547.

    Article  CAS  Google Scholar 

  22. Petroski MD, Deshaies RJ . Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6: 9–20.

    Article  CAS  Google Scholar 

  23. Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG et al. DNA damage regulates UHRF1 stability via the SCF(beta-TrCP) E3 ligase. Mol Cell Biol 2013; 33: 1139–1148.

    Article  CAS  Google Scholar 

  24. Tan MK, Lim HJ, Harper JW . SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol 2011; 31: 3687–3699.

    Article  CAS  Google Scholar 

  25. Liu H, Cheng EH, Hsieh JJ . Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev 2007; 21: 2385–2398.

    Article  CAS  Google Scholar 

  26. Dimri M, Bommi PV, Sahasrabuddhe AA, Khandekar JD, Dimri GP . Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells. Carcinogenesis 2010; 31: 489–495.

    Article  CAS  Google Scholar 

  27. Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y et al. Global identification of modular cullin-RING ligase substrates. Cell 2011; 147: 459–474.

    Article  CAS  Google Scholar 

  28. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009; 458: 732–736.

    Article  CAS  Google Scholar 

  29. Frescas D, Pagano M . Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 2008; 8: 438–449.

    Article  CAS  Google Scholar 

  30. Nakayama KI, Nakayama K . Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 2006; 6: 369–381.

    Article  CAS  Google Scholar 

  31. Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP . Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 2003; 11: 1445–1456.

    Article  CAS  Google Scholar 

  32. Kaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 2010; 24: 2615–2620.

    Article  CAS  Google Scholar 

  33. Argetsinger LS, Kouadio JL, Steen H, Stensballe A, Jensen ON, Carter-Su C . Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol 2004; 24: 4955–4967.

    Article  CAS  Google Scholar 

  34. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y . pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev 2007; 21: 49–54.

    Article  CAS  Google Scholar 

  35. Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247–5255.

    Article  CAS  Google Scholar 

  36. Morey L, Helin K . Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 2010; 35: 323–332.

    Article  CAS  Google Scholar 

  37. Ciferri C, Lander GC, Maiolica A, Herzog F, Aebersold R, Nogales E . Molecular architecture of human polycomb repressive complex 2. Elife 2012; 1: e00005.

    Article  Google Scholar 

  38. Yadav AK, Sahasrabuddhe AA, Dimri M, Bommi PV, Sainger R, Dimri GP . Deletion analysis of BMI1 oncoprotein identifies its negative regulatory domain. Mol Cancer 2010; 9: 158.

    Article  Google Scholar 

  39. Velusamy T, Palanisamy N, Kalyana-Sundaram S, Sahasrabuddhe AA, Maher CA, Robinson DR et al. Recurrent reciprocal RNA chimera involving YPEL5 and PPP1CB in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2013; 110: 3035–3040.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH Grants R01 DE119249, and R01 CA136905 to KSJ E-J, R01 CA140806 to MSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S J Elenitoba-Johnson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahasrabuddhe, A., Chen, X., Chung, F. et al. Oncogenic Y641 mutations in EZH2 prevent Jak2/β-TrCP-mediated degradation. Oncogene 34, 445–454 (2015). https://doi.org/10.1038/onc.2013.571

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.571

Keywords

This article is cited by

Search

Quick links