Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes

Abstract

Progesterone and estrogen are important drivers of breast cancer proliferation. Herein, we probed estrogen receptor-α (ER) and progesterone receptor (PR) cross-talk in breast cancer models. Stable expression of PR-B in PR-low/ER+ MCF7 cells increased cellular sensitivity to estradiol and insulin-like growth factor 1 (IGF1), as measured in growth assays performed in the absence of exogenous progestin; similar results were obtained in PR-null/ER+ T47D cells stably expressing PR-B. Genome-wide microarray analyses revealed that unliganded PR-B induced robust expression of a subset of estradiol-responsive ER target genes, including cathepsin-D (CTSD). Estradiol-treated MCF7 cells stably expressing PR-B exhibited enhanced ER Ser167 phosphorylation and recruitment of ER, PR and the proline-, glutamate- and leucine-rich protein 1 (PELP1) to an estrogen response element in the CTSD distal promoter; this complex co-immunoprecipitated with IGF1 receptor (IGFR1) in whole-cell lysates. Importantly, ER/PR/PELP1 complexes were also detected in human breast cancer samples. Inhibition of IGF1R or phosphoinositide 3-kinase blocked PR-B-dependent CTSD mRNA upregulation in response to estradiol. Similarly, inhibition of IGF1R or PR significantly reduced ER recruitment to the CTSD promoter. Stable knockdown of endogenous PR or onapristone treatment of multiple unmodified breast cancer cell lines blocked estradiol-mediated CTSD induction, inhibited growth in soft agar and partially restored tamoxifen sensitivity of resistant cells. Further, combination treatment of breast cancer cells with both onapristone and IGF1R tyrosine kinase inhibitor AEW541 was more effective than either agent alone. In summary, unliganded PR-B enhanced proliferative responses to estradiol and IGF1 via scaffolding of ER-α/PELP1/IGF1R-containing complexes. Our data provide a strong rationale for targeting PR in combination with ER and IGF1R in patients with luminal breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Nadia Harbeck, Frédérique Penault-Llorca, … Fatima Cardoso

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005 -20 365: 1687–1717.

    Article  Google Scholar 

  2. Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 2011; 378: 771–784.

    Article  CAS  PubMed  Google Scholar 

  3. Musgrove EA, Sutherland RL . Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 2009; 9: 631–643.

    Article  CAS  PubMed  Google Scholar 

  4. de Leeuw R, Neefjes J, Michalides R . A role for estrogen receptor phosphorylation in the resistance to tamoxifen. Int J Breast Cancer 2011; 2011: 232435.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vallabhaneni S, Nair BC, Cortez V, Challa R, Chakravarty D, Tekmal RR et al. Significance of ER-Src axis in hormonal therapy resistance. Breast Cancer Res Treat 2011; 130: 377–385.

    Article  CAS  PubMed  Google Scholar 

  6. Ballare C, Uhrig M, Bechtold T, Sancho E, Di Domenico M, Migliaccio A et al. Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Src/Erk pathway in mammalian cells. Mol Cell Biol 2003; 23: 1994–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shimizu T, Krebs S, Bauersachs S, Blum H, Wolf E, Miyamoto A . Actions and interactions of progesterone and estrogen on transcriptome profiles of the bovine endometrium. Physiol Genom 2010; 42A: 290–300.

    Article  CAS  Google Scholar 

  8. Daniel AR, Hagan CR, Lange CA . Progesterone receptor action: defining a role in breast cancer. Expert Rev Endocrinol Metab 2011; 6: 359–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Proietti CJ, Rosemblit C, Beguelin W, Rivas MA, Diaz Flaque MC, Charreau EH et al. Activation of Stat3 by heregulin/ErbB-2 through the co-option of progesterone receptor signaling drives breast cancer growth. Mol Cell Biol 2009; 29: 1249–1265.

    Article  CAS  PubMed  Google Scholar 

  10. Daniel AR, Lange CA . Protein kinases mediate ligand-independent derepression of sumoylated progesterone receptors in breast cancer cells. Proc Natl Acad Sci USA 2009; 106: 14287–14292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hagan CR, Regan TM, Dressing GE, Lange CA . Ck2-dependent phosphorylation of progesterone receptors (PR) on Ser81 regulates PR-B isoform-specific target gene expression in breast cancer cells. Mol Cell Biol 2011; 31: 2439–2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knutson TP, Daniel AR, Fan D, Silverstein KA, Covington KR, Fuqua SA et al. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression. Breast Cancer Res 2012; 14: R95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta A, Mehta R, Alimirah F, Peng X, Murillo G, Wiehle R et al. Efficacy and mechanism of action of Proellex, an antiprogestin in aromatase overexpressing and Letrozole resistant T47D breast cancer cells. J Steroid Biochem Mol Biol 2013; 133: 30–42.

    Article  CAS  PubMed  Google Scholar 

  14. Giulianelli S, Vaque JP, Soldati R, Wargon V, Vanzulli SI, Martins R et al. Estrogen receptor alpha mediates progestin-induced mammary tumor growth by interacting with progesterone receptors at the cyclin D1/MYC promoters. Cancer Res 2012; 72: 2416–2427.

    Article  CAS  PubMed  Google Scholar 

  15. Hilton HN, Graham JD, Kantimm S, Santucci N, Cloosterman D, Huschtscha LI et al. Progesterone and estrogen receptors segregate into different cell subpopulations in the normal human breast. Mol Cell Endocrinol 2012; 361: 191–201.

    Article  CAS  PubMed  Google Scholar 

  16. Zukiwski AA . Independent characterization by duel staining of progesterone receptor (PR) and estrogen receptor (ER) in breast cancer (BC). Abstract No. 596 from the ASCO (American Society for Clinical Oncology) Meeting. Chicago, IL,, 2013.

    Google Scholar 

  17. Brisken C, O’Malley B . Hormone action in the mammary gland. Cold Spring Harb Perspect Biol 2010; 2: a003178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Faivre EJ, Lange CA . Progesterone receptors upregulate Wnt-1 to induce epidermal growth factor receptor transactivation and c-Src-dependent sustained activation of Erk1/2 mitogen-activated protein kinase in breast cancer cells. Mol Cell Biol 2007; 27: 466–480.

    Article  CAS  PubMed  Google Scholar 

  19. Boonyaratanakornkit V, Scott MP, Ribon V, Sherman L, Anderson SM, Maller JL et al. Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol Cell 2001; 8: 269–280.

    Article  CAS  PubMed  Google Scholar 

  20. Fagan DH, Yee D . Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13: 423–429.

    Article  PubMed  Google Scholar 

  21. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res 2008; 68: 3108–3114.

    Article  CAS  PubMed  Google Scholar 

  22. Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S et al. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 2008; 68: 826–833.

    Article  CAS  PubMed  Google Scholar 

  23. Riggins RB, Lan JP, Zhu Y, Klimach U, Zwart A, Cavalli LR et al. ERRgamma mediates tamoxifen resistance in novel models of invasive lobular breast cancer. Cancer Res 2008; 68: 8908–8917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 2006; 25: 3994–4008.

    Article  CAS  PubMed  Google Scholar 

  25. Chia SK, Bramwell VH, Tu D, Shepherd LE, Jiang S, Vickery T et al. A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin Cancer Res 2012; 18: 4465–4472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Becker MA, Ibrahim YH, Cui X, Lee AV, Yee D . The IGF pathway regulates ERalpha through a S6K1-dependent mechanism in breast cancer cells. Mol Endocrinol 2011; 25: 516–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mote PA, Bartow S, Tran N, Clarke CL . Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res Treat 2002; 72: 163–172.

    Article  CAS  PubMed  Google Scholar 

  29. Bretschneider N, Kangaspeska S, Seifert M, Reid G, Gannon F, Denger S . E2-mediated cathepsin D (CTSD) activation involves looping of distal enhancer elements. Mol Oncol 2008; 2: 182–190.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M . Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000; 103: 843–852.

    Article  CAS  PubMed  Google Scholar 

  31. Daniel AR, Knutson TP, Lange CA . Signaling inputs to progesterone receptor gene regulation and promoter selectivity. Mol Cell Endocrinol 2009; 308: 47–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chakravarty D, Tekmal RR, Vadlamudi RK . PELP1: a novel therapeutic target for hormonal cancers. IUBMB Life 2010; 62: 162–169.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheskis BJ, Greger J, Cooch N, McNally C, McLarney S, Lam HS et al. MNAR plays an important role in ERa activation of Src/MAPK and PI3K/Akt signaling pathways. Steroids 2008; 73: 901–905.

    Article  CAS  PubMed  Google Scholar 

  34. Vadlamudi RK, Manavathi B, Balasenthil S, Nair SS, Yang Z, Sahin AA et al. Functional implications of altered subcellular localization of PELP1 in breast cancer cells. Cancer Res 2005; 65: 7724–7732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fox EM, Bernaciak TM, Wen J, Weaver AM, Shupnik MA, Silva CM . Signal transducer and activator of transcription 5b, c-Src, and epidermal growth factor receptor signaling play integral roles in estrogen-stimulated proliferation of estrogen receptor-positive breast cancer cells. Mol Endocrinol 2008; 22: 1781–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leontovich AA, Zhang S, Quatraro C, Iankov I, Veroux PF, Gambino MW et al. Raf-1 oncogenic signaling is linked to activation of mesenchymal to epithelial transition pathway in metastatic breast cancer cells. Int J Oncol 2012; 40: 1858–1864.

    CAS  PubMed  Google Scholar 

  37. Byron SA, Horwitz KB, Richer JK, Lange CA, Zhang X, Yee D . Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer 2006; 95: 1220–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, P Janet, Z Chen, JS David, N Steven . Progesterone receptor binds to an estrogen response element, and antagonizes estrogen receptor-mediated gene induction. The role of DNA as a functional ligand. Keystone Symposia on Molecular and Cellular Biology 2008 Abstract Book 7 March 2008.

  39. Tang Q, Chen Y, Meyer C, Geistlinger T, Lupien M, Wang Q et al. A comprehensive view of nuclear receptor cancer cistromes. Cancer Res 2011; 71: 6940–6947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fox EM, Arteaga CL, Miller TW . Abrogating endocrine resistance by targeting ERalpha and PI3K in breast cancer. Front Oncol 2012; 2: 145.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Baselga J . Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist 2011; 16 (Suppl 1): 12–19.

    Article  PubMed  Google Scholar 

  42. Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA . Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol 2006; 20: 3120–3132.

    Article  CAS  PubMed  Google Scholar 

  43. Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH . Pathways to tamoxifen resistance. Cancer Lett 2007; 256: 1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Casa AJ, Dearth RK, Litzenburger BC, Lee AV, Cui X . The type I insulin-like growth factor receptor pathway: a key player in cancer therapeutic resistance. Front Biosci 2008; 13: 3273–3287.

    Article  CAS  PubMed  Google Scholar 

  45. Fagan DH, Uselman RR, Sachdev D, Yee D . Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor: implications for breast cancer treatment. Cancer Res 2012; 72: 3372–3380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aupperlee MD, Haslam SZ . Differential hormonal regulation and function of progesterone receptor isoforms in normal adult mouse mammary gland. Endocrinology 2007; 148: 2290–2300.

    Article  CAS  PubMed  Google Scholar 

  47. Encarnacion CA, Ciocca DR, McGuire WL, Clark GM, Fuqua SA, Osborne CK . Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat 1993; 26: 237–246.

    Article  CAS  PubMed  Google Scholar 

  48. Johnston SR, Saccani-Jotti G, Smith IE, Salter J, Newby J, Coppen M et al. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res 1995; 55: 3331–3338.

    CAS  PubMed  Google Scholar 

  49. Lanari C, Wargon V, Rojas P, Molinolo AA . Antiprogestins in breast cancer treatment: are we ready? Endocr Relat Cancer 2012; 19: R35–R50.

    Article  CAS  PubMed  Google Scholar 

  50. Sachdev D, Li SL, Hartell JS, Fujita-Yamaguchi Y, Miller JS, Yee D . A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res 2003; 63: 627–635.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Deepali Sachdev (University of Minnesota) for the kind gift of the MCF7L cells. Onapristone was kindly provided by Arno Therapeutics Inc. (Flemington, NJ, USA). The Masonic Cancer Center Biostatistics and Bioinformatics core performed the normalization of the raw microarray data. AEW541 was a gift from Novartis Pharmaceuticals (Basel, Switzerland). This work was supported by NIH R01 CA159712 (CAL), P30 CA077598 (DY) and K07 CA131501 (JHO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C A Lange.

Ethics declarations

Competing interests

Dr Lange receives consulting income from Arno Therapeutics Inc. This interest has been reviewed and managed by the University of Minnesota in accordance with its conflict of interest policies.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, A., Gaviglio, A., Knutson, T. et al. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes. Oncogene 34, 506–515 (2015). https://doi.org/10.1038/onc.2013.579

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.579

Keywords

This article is cited by

Search

Quick links