Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia

Abstract

Constitutional dominant loss-of-function mutations in the SPRED1 gene cause a rare phenotype referred as neurofibromatosis type 1 (NF1)-like syndrome or Legius syndrome, consisted of multiple café-au-lait macules, axillary freckling, learning disabilities and macrocephaly. SPRED1 is a negative regulator of the RAS MAPK pathway and can interact with neurofibromin, the NF1 gene product. Individuals with NF1 have a higher risk of haematological malignancies. SPRED1 is highly expressed in haematopoietic cells and negatively regulates haematopoiesis. SPRED1 seemed to be a good candidate for leukaemia predisposition or transformation. We performed SPRED1 mutation screening and expression status in 230 paediatric lymphoblastic and acute myeloblastic leukaemias (AMLs). We found a loss-of-function frameshift SPRED1 mutation in a patient with Legius syndrome. In this patient, the leukaemia blasts karyotype showed a SPRED1 loss of heterozygosity, confirming SPRED1 as a tumour suppressor. Our observation confirmed that acute leukaemias are rare complications of the Legius syndrome. Moreover, SPRED1 was significantly decreased at RNA and protein levels in the majority of AMLs at diagnosis compared with normal or paired complete remission bone marrows. SPRED1 decreased expression correlated with genetic features of AML. Our study reveals a new mechanism which contributes to deregulate RAS MAPK pathway in the vast majority of paediatric AMLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Brems H, Chmara M, Sahbatou M, Denayer E, Taniguchi K, Kato R et al. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet 2007; 39: 1120–1126.

    Article  CAS  Google Scholar 

  2. Pasmant E, Sabbagh A, Hanna N, Masliah-Planchon J, Jolly E, Goussard P et al. SPRED1 germline mutations caused a neurofibromatosis type 1 overlapping phenotype. J Med Genet 2009; 46: 425–430.

    Article  CAS  Google Scholar 

  3. Messiaen L, Yao S, Brems H, Callens T, Sathienkijkanchai A, Denayer E et al. Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome. JAMA 2009; 302: 2111–2118.

    Article  CAS  Google Scholar 

  4. Brems H, Pasmant E, Van Minkelen R, Wimmer K, Upadhyaya M, Legius E et al. Review and update of SPRED1 mutations causing Legius syndrome. Hum Mutat 2012; 33: 1538–1546.

    Article  CAS  Google Scholar 

  5. Bentires-Alj M, Kontaridis MI, Neel BG . Stops along the RAS pathway in human genetic disease. Nat Med 2006; 12: 283–285.

    Article  CAS  Google Scholar 

  6. Pasmant E, Ballerini P, Lapillonne H, Perot C, Vidaud D, Leverger G et al. SPRED1 disorder and predisposition to leukemia in children. Blood 2009; 114: 1131.

    Article  CAS  Google Scholar 

  7. Schubbert S, Shannon K, Bollag G . Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7: 295–308.

    Article  CAS  Google Scholar 

  8. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K et al. Spred is a Sprouty-related suppressor of Ras signalling. Nature 2001; 412: 647–651.

    Article  CAS  Google Scholar 

  9. Nonami A, Kato R, Taniguchi K, Yoshiga D, Taketomi T, Fukuyama S et al. Spred-1 negatively regulates interleukin-3-mediated ERK/mitogen-activated protein (MAP) kinase activation in hematopoietic cells. J Biol Chem 2004; 279: 52543–52551.

    Article  CAS  Google Scholar 

  10. Inoue H, Kato R, Fukuyama S, Nonami A, Taniguchi K, Matsumoto K et al. Spred-1 negatively regulates allergen-induced airway eosinophilia and hyperresponsiveness. J Exp Med 2005; 201: 73–82.

    Article  CAS  Google Scholar 

  11. Stowe IB, Mercado EL, Stowe TR, Bell EL, Oses-Prieto JA, Hernandez H et al. A shared molecular mechanism underlies the human rasopathiesLegius syndrome and Neurofibromatosis-1. Genes Dev 2012; 26: 1421–1426.

    Article  CAS  Google Scholar 

  12. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 2009; 41: 1006–1010.

    Article  CAS  Google Scholar 

  13. Treviño LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009; 41: 1001–1005.

    Article  Google Scholar 

  14. Levine RL . Inherited susceptibility to pediatric acute lymphoblastic leukemia. Nat Genet 2009; 41: 957–958.

    Article  CAS  Google Scholar 

  15. Case M, Matheson E, Minto L, Hassan R, Harrison CJ, Bown N et al. Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res 2008; 68: 6803–6809.

    Article  CAS  Google Scholar 

  16. Braun BS, Shannon K . Targeting Ras in myeloid leukemias. Clin Cancer Res 2008; 14: 2249–2252.

    Article  CAS  Google Scholar 

  17. Bundschu K, Walter U, Schuh K . The VASP-Spred-Sprouty domain puzzle. J Biol Chem 2006; 281: 36477–36481.

    Article  CAS  Google Scholar 

  18. Ishizaki T, Tamiya T, Taniguchi K, Morita R, Kato R, Okamoto F et al. miR126 positively regulates mast cell proliferation and cytokine production through suppressing Spred1. Genes Cells 2011; 16: 803–814.

    Article  CAS  Google Scholar 

  19. Miyoshi K, Wakioka T, Nishinakamura H, Kamio M, Yang L, Inoue M et al. The Sprouty-related protein, Spred, inhibits cell motility, metastasis, and Rho-mediated actin reorganization. Oncogene 2004; 23: 5567–5576.

    Article  CAS  Google Scholar 

  20. Yoshida T, Hisamoto T, Akiba J, Koga H, Nakamura K, Tokunaga Y et al. Spreds, inhibitors of the Ras/ERK signal transduction, are disregulated in human hepatocellular carcinoma and linked to the malignant phenotype of tumors. Oncogene 2006; 25: 6056–6066.

    Article  CAS  Google Scholar 

  21. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333–339.

    Article  CAS  Google Scholar 

  22. Kindler T, Lipka DB, Fischer T . FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 2010; 116: 5089–5102.

    Article  CAS  Google Scholar 

  23. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Müller C et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914.

    CAS  Google Scholar 

  24. Cutts BA, Sjogren AK, Andersson KM, Wahlstrom AM, Karlsson C, Swolin B et al. Nf1 deficiency cooperates with oncogenic K-RAS to induce acute myeloid leukemia in mice. Blood 2009; 114: 3629–3632.

    Article  CAS  Google Scholar 

  25. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 2010; 465: 473–477.

    Article  CAS  Google Scholar 

  26. Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008; 22: 915–931.

    Article  CAS  Google Scholar 

  27. Walter RB, Appelbaum FR, Tallman MS, Weiss NS, Larson RA, Estey EH . Shortcomings in the clinical evaluation of new drugs: acute myeloid leukemia as paradigm. Blood 2010; 116: 2420–2428.

    Article  CAS  Google Scholar 

  28. Lapillonne H, Llopis L, Auvrignon A, Renneville A, Labopin M, Mazingue F et al. Extensive mutational status of genes and clinical outcome in pediatric acute myeloid leukemia. Leukemia 2010; 24: 205–209.

    Article  CAS  Google Scholar 

  29. Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J . Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy related myelodysplasia and acute myeloid leukemia. Leukemia 2005; 19: 2232–2240.

    Article  CAS  Google Scholar 

  30. Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavaroni I, Spinelli M et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 2004; 14: 307–313.

    Article  Google Scholar 

  31. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  Google Scholar 

  32. Letourneux C, Rocher G, Porteu F . B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 2006; 25: 727–738.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant from l'Association pour la Recherche sur les Maladies Hématologiques de l'Enfant (A.R.M.H.E.). We thank the patients and their parents for their participation. We are grateful to Pr. Akihiko Yoshimura for providing anti-Spred-1 antibody, Mrs. Frédérique Siotto for expert technical assistance, and Dr. Audrey Sabbagh for her statistical expertise.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Pasmant or P Ballerini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasmant, E., Gilbert-Dussardier, B., Petit, A. et al. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene 34, 631–638 (2015). https://doi.org/10.1038/onc.2013.587

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.587

Keywords

This article is cited by

Search

Quick links