Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling

Abstract

The taxanes are effective microtubule-stabilizing chemotherapy drugs used in the treatment of various solid tumors. However, the emergence of drug resistance hampers their clinical efficacy. The molecular basis of clinical taxane resistance remains poorly understood. Breast cancer 1, early onset gene, BRCA1, is a tumor-suppressor gene, whose expression has been correlated with taxane sensitivity in many solid tumors including non-small cell lung cancer. However, the molecular mechanism underlying the relationship between BRCA1 (B1) expression and taxane activity remains unclear. To this end, we created a stable B1 knockdown A549 cell line (B1-KD) to investigate B1’s role in microtubule biology and response to taxane treatment. We show that B1-KD rendered A549 cells resistant to paclitaxel (PTX), phenocopying clinical studies showing that low B1 expression correlated with taxane resistance. As previously reported, we show that loss of B1 enhanced centrosomal γ-tubulin localization and microtubule nucleation. Interestingly, we found that the B1-KD cells exhibited increased microtubule dynamics as compared with parental A549 cells, as assessed by live-cell confocal microscopy using enhanced green fluorescent protein-tagged α-tubulin or EB1 protein. In addition, we showed that loss of B1 impairs the ability of PTX to induce microtubule polymerization using immunofluorescence microscopy and a cell-based tubulin polymerization assay. Furthermore, B1-KD cells exhibited significantly lower intracellular binding of a fluorescently labeled PTX to microtubules. Recent studies have shown that PTX-stabilized microtubules serves as a scaffold for pro-caspase-8 binding and induction of apoptosis downstream of induced-proximity activation of caspase-8. Here we show that loss of B1 reduces the association of pro-caspase-8 with microtubules and subsequently leads to impaired PTX-induced activation of apoptosis. Taken together, our data show that B1 regulates indirectly endogenous microtubule dynamics and stability while its loss leads to microtubules that are more dynamic and less susceptible to PTX-induced stabilization conferring taxane resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jordan MA, Wilson L . Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 253–265.

    Article  CAS  PubMed  Google Scholar 

  2. Mamounas EP, Bryant J, Lembersky B, Fehrenbacher L, Sedlacek SM, Fisher B et al. Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol 2005; 23: 3686–3696.

    Article  CAS  PubMed  Google Scholar 

  3. Roche H, Fumoleau P, Spielmann M, Canon JL, Delozier T, Serin D et al. Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial. J Clin Oncol 2006; 24: 5664–5671.

    Article  CAS  PubMed  Google Scholar 

  4. Martin M, Pienkowski T, Mackey J, Pawlicki M, Guastalla JP, Weaver C et al. Adjuvant docetaxel for node-positive breast cancer. N Engl J Med 2005; 352: 2302–2313.

    Article  CAS  PubMed  Google Scholar 

  5. Martin M, Segui MA, Anton A, Ruiz A, Ramos M, Adrover E et al. Adjuvant docetaxel for high-risk, node-negative breast cancer. N Engl J Med 2010; 363: 2200–2210.

    Article  CAS  PubMed  Google Scholar 

  6. Buzdar AU, Singletary SE, Valero V, Booser DJ, Ibrahim NK, Rahman Z et al. Evaluation of paclitaxel in adjuvant chemotherapy for patients with operable breast cancer: preliminary data of a prospective randomized trial. Clin Cancer Res 2002; 8: 1073–1079.

    CAS  PubMed  Google Scholar 

  7. Henderson IC, Berry DA, Demetri GD, Cirrincione CT, Goldstein LJ, Martino S et al. Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 2003; 21: 976–983.

    Article  CAS  PubMed  Google Scholar 

  8. Roszkowski K, Pluzanska A, Krzakowski M, Smith AP, Saigi E, Aasebo U et al. A multicenter, randomized, phase III study of docetaxel plus best supportive care versus best supportive care in chemotherapy-naive patients with metastatic or non-resectable localized non-small cell lung cancer (NSCLC). Lung Cancer 2000; 27: 145–157.

    Article  CAS  PubMed  Google Scholar 

  9. Ranson M, Davidson N, Nicolson M, Falk S, Carmichael J, Lopez P et al. Randomized trial of paclitaxel plus supportive care versus supportive care for patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 2000; 92: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  10. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010; 376: 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  11. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351: 1502–1512.

    Article  CAS  PubMed  Google Scholar 

  12. Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jones JA, Taplin ME et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004; 351: 1513–1520.

    Article  CAS  PubMed  Google Scholar 

  13. Choy H . Taxanes in combined-modality therapy for solid tumors. Oncology (Williston Park) 1999; 13 (Suppl 5): 23–38.

    CAS  Google Scholar 

  14. Quinn JE, James CR, Stewart GE, Mulligan JM, White P, Chang GK et al. BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin Cancer Res 2007; 13: 7413–7420.

    Article  CAS  PubMed  Google Scholar 

  15. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M et al. Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat 2008; 108: 289–296.

    Article  CAS  PubMed  Google Scholar 

  16. Font A, Taron M, Gago JL, Costa C, Sanchez JJ, Carrato C et al. BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann Oncol 2011; 22: 139–144.

    Article  CAS  PubMed  Google Scholar 

  17. Reguart N, Cardona AF, Carrasco E, Gomez P, Taron M, Rosell R . BRCA1: a new genomic marker for non-small-cell lung cancer. Clin Lung Cancer 2008; 9: 331–339.

    Article  CAS  PubMed  Google Scholar 

  18. Saiki Y, Ogawa T, Shiga K, Sunamura M, Kobayashi T, Horii AA . Human head and neck squamous cell carcinoma cell line with acquired cis-diamminedichloroplatinum-resistance shows remarkable upregulation of BRCA1 and hypersensitivity to taxane. Int J Otolaryngol 2011; 2011: 521852.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Narod SA, Foulkes WD . BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 2004; 4: 665–676.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Powell SN . The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 2005; 3: 531–539.

    Article  CAS  PubMed  Google Scholar 

  21. Tassone P, Tagliaferri P, Perricelli A, Blotta S, Quaresima B, Martelli ML et al. BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer 2003; 88: 1285–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coene ED, Gadelha C, White N, Malhas A, Thomas B, Shaw M et al. A novel role for BRCA1 in regulating breast cancer cell spreading and motility. J Cell Biol 2011; 192: 497–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parvin JD . The BRCA1-dependent ubiquitin ligase, gamma-tubulin, and centrosomes. Environ Mol Mutagen 2009; 50: 649–653.

    Article  CAS  PubMed  Google Scholar 

  24. Sankaran S, Crone DE, Palazzo RE, Parvin JD . BRCA1 regulates gamma-tubulin binding to centrosomes. Cancer Biol Ther 2007; 6: 1853–1857.

    Article  CAS  PubMed  Google Scholar 

  25. Sankaran S, Starita LM, Groen AC, Ko MJ, Parvin JD . Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Mol Cell Biol 2005; 25: 8656–8668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T . Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 2011; 8: 244–250.

    Article  CAS  PubMed  Google Scholar 

  27. Gascoigne KE, Taylor SS . Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008; 14: 111–122.

    Article  CAS  PubMed  Google Scholar 

  28. Mielgo A, Torres VA, Clair K, Barbero S, Stupack DG . Paclitaxel promotes a caspase 8-mediated apoptosis through death effector domain association with microtubules. Oncogene 2009; 28: 3551–3562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilson L, Jordan MA . Microtubule dynamics: taking aim at a moving target. Chem Biol 1995; 2: 569–573.

    Article  CAS  PubMed  Google Scholar 

  30. Vaughan KT . TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J Cell Biol 2005; 171: 197–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 2007; 450: 1100–1105.

    Article  CAS  PubMed  Google Scholar 

  32. Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W . Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 2003; 5: 64–70.

    Article  CAS  PubMed  Google Scholar 

  33. Schoffski P, Taron M, Jimeno J, Grosso F, Sanfilipio R, Casali PG et al. Predictive impact of DNA repair functionality on clinical outcome of advanced sarcoma patients treated with trabectedin: a retrospective multicentric study. Eur J Cancer 2011; 47: 1006–1012.

    Article  CAS  PubMed  Google Scholar 

  34. Russell PA, Pharoah PD, De Foy K, Ramus SJ, Symmonds I, Wilson A et al. Frequent loss of BRCA1 mRNA and protein expression in sporadic ovarian cancers. Int J Cancer 2000; 87: 317–321.

    Article  CAS  PubMed  Google Scholar 

  35. Lynch HT, Silva E, Snyder C, Lynch JF . Hereditary breast cancer: part I. Diagnosing hereditary breast cancer syndromes. Breast J 2008; 14: 3–13.

    Article  PubMed  Google Scholar 

  36. Hennessy BT, Timms KM, Carey MS, Gutin A, Meyer LA, Flake DD et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol 2010; 28: 3570–3576.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McAlpine JN, Porter H, Kobel M, Nelson BH, Prentice LM, Kalloger SE et al. BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma. Mod Pathol 2012; 25: 740–750.

    Article  CAS  PubMed  Google Scholar 

  38. Rhiem K, Todt U, Wappenschmidt B, Klein A, Wardelmann E, Schmutzler RK . Sporadic breast carcinomas with somatic BRCA1 gene deletions share genotype/phenotype features with familial breast carcinomas. Anticancer Res 2010; 30: 3445–3449.

    PubMed  Google Scholar 

  39. Wei J, Costa C, Ding Y, Zou Z, Yu L, Sanchez JJ et al. mRNA expression of BRCA1, PIAS1, and PIAS4 and survival after second-line docetaxel in advanced gastric cancer. J Natl Cancer Inst 2011; 103: 1552–1556.

    Article  CAS  PubMed  Google Scholar 

  40. Rosell R, Perez-Roca L, Sanchez JJ, Cobo M, Moran T, Chaib I et al. Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression. PLoS One 2009; 4 e5133.

  41. Parysek LM, Asnes CF, Olmsted JB . MAP 4: occurrence in mouse tissues. J Cell Biol 1984; 99 (Pt 1): 1309–1315.

    Article  CAS  PubMed  Google Scholar 

  42. Jourdain L, Curmi P, Sobel A, Pantaloni D, Carlier MF . Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 1997; 36: 10817–10821.

    Article  CAS  PubMed  Google Scholar 

  43. Giannakakou P, Nakano M, Nicolaou KC, O'Brate A, Yu J, Blagosklonny MV et al. Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc Natl Acad Sci USA 2002; 99: 10855–10860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Giannakakou P, Sackett DL, Ward Y, Webster KR, Blagosklonny MV, Fojo T . p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol 2000; 2: 709–717.

    Article  CAS  PubMed  Google Scholar 

  45. Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res 2011; 71: 6019–6029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carbonaro M, Escuin D, O’Brate A, Thadani-Mulero M, Giannakakou P . Microtubules regulate hypoxia-inducible factor-1alpha protein trafficking and activity: implications for taxane therapy. J Biol Chem 2012; 287: 11859–11869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thoma CR, Matov A, Gutbrodt KL, Hoerner CR, Smole Z, Krek W et al. Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability. J Cell Biol 2010; 190: 991–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zumbrunn J, Kinoshita K, Hyman AA, Nathke IS . Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol 2001; 11: 44–49.

    Article  CAS  PubMed  Google Scholar 

  49. Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 2004; 6: 820–830.

    Article  CAS  PubMed  Google Scholar 

  50. Jin S, Gao H, Mazzacurati L, Wang Y, Fan W, Chen Q et al. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression. J Biol Chem 2009; 284: 22970–22977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A et al. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 2006; 127: 539–552.

    Article  CAS  PubMed  Google Scholar 

  52. Hsu LC, Doan TP, White RL . Identification of a gamma-tubulin-binding domain in BRCA1. Cancer Res 2001; 61: 7713–7718.

    CAS  PubMed  Google Scholar 

  53. Chen L, Stone MC, Tao J, Rolls MM . Axon injury and stress trigger a microtubule-based neuroprotective pathway. Proc Natl Acad Sci USA 2012; 109: 11842–11847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bouissou A, Verollet C, Sousa A, Sampaio P, Wright M, Sunkel CE et al. {gamma}-Tubulin ring complexes regulate microtubule plus end dynamics. J Cell Biol 2009; 187: 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu G, Paige JS, Jaffrey SR . Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 2010; 28: 868–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goncalves A, Braguer D, Kamath K, Martello L, Briand C, Horwitz S et al. Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc Natl Acad Sci USA 2001; 98: 11737–11742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Minotti AM, Barlow SB, Cabral F . Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem 1991; 266: 3987–3994.

    CAS  PubMed  Google Scholar 

  58. Marcus AI, O’Brate AM, Buey RM, Zhou J, Thomas S, Khuri FR et al. Farnesyltransferase inhibitors reverse taxane resistance. Cancer Res 2006; 66: 8838–8846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou J, Vos CC, Gjyrezi A, Yoshida M, Khuri FR, Tamanoi F et al. The protein farnesyltransferase regulates HDAC6 activity in a microtubule-dependent manner. J Biol Chem 2009; 284: 9648–9655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kauh J, Chanel-Vos C, Escuin D, Fanucchi MP, Harvey RD, Saba N et al. Farnesyl transferase expression determines clinical response to the docetaxel-lonafarnib combination in patients with advanced malignancies. Cancer 2011; 117: 4049–4059.

    Article  CAS  PubMed  Google Scholar 

  61. Etienne-Manneville S . From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 2010; 22: 104–111.

    Article  CAS  PubMed  Google Scholar 

  62. Carbonaro M, O'Brate A, Giannakakou P . Microtubule disruption targets HIF-1alpha mRNA to cytoplasmic P-bodies for translational repression. J Cell Biol 2011; 192: 83–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marcus AI, Zhou J, O'Brate A, Hamel E, Wong J, Nivens M et al. The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase. Cancer Res 2005; 65: 3883–3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Geri Kreitzer (Weill Cornell Medical College), Dr Mary Ann Jordan (University of California, Santa Barbara) and Dr Richard Baer (Columbia University) for their kind gifts. We would also like to thank Dr Siddhartha Sen for help with the flow cytometry experiments. Work by Matthew Sung was supported by the National Institutes of Health (T32 CA062948, RO1 CA137020, NCI U54 CA143876).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Giannakakou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, M., Giannakakou, P. BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling. Oncogene 33, 1418–1428 (2014). https://doi.org/10.1038/onc.2013.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.85

Keywords

This article is cited by

Search

Quick links