Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Vimentin regulates lung cancer cell adhesion through a VAV2–Rac1 pathway to control focal adhesion kinase activity

Subjects

Abstract

Vimentin is an intermediate filament protein whose expression correlates with increased metastatic disease, reduced patient survival and poor prognosis across multiple tumor types. Despite these well-characterized correlations, the molecular role of vimentin in cancer cell motility remains undefined. To approach this, we used an unbiased phosphoproteomics screen in lung cancer cell lines to discover cell motility proteins that show significant changes in phosphorylation upon vimentin depletion. We identified the guanine nucleotide exchange factor (GEF), VAV2, as having the greatest loss of phosphorylation owing to vimentin depletion. Since VAV2 serves as a GEF for the small Rho GTPase Rac1, a key player in cell motility and adhesion, we explored the vimentin-VAV2 pathway as a potential novel regulator of lung cancer cell motility. We show that VAV2 localizes to vimentin-positive focal adhesions (FAs) in lung cancer cells and complexes with vimentin and FA kinase (FAK). Vimentin loss impairs both pY142-VAV2 and downstream pY397-FAK activity showing that vimentin is critical for maintaining VAV2 and FAK activity. Importantly, vimentin depletion reduces the activity of the VAV2 target, Rac1, and a constitutively active Rac1 rescues defects in FAK and cell adhesion when vimentin or VAV2 is compromised. Based upon this data, we propose a model whereby vimentin promotes FAK stabilization through VAV2-mediated Rac1 activation. This model may explain why vimentin expressing metastatic lung cancer cells are more motile and invasive.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Singh GK, Miller BA, Hankey BF . Changing area socioeconomic patterns in U.S. cancer mortality, 1950–1998: part II–Lung and colorectal cancers. J Natl Cancer Inst 2002; 94: 916–925.

    Article  PubMed  Google Scholar 

  2. Pisters KM, Le Chevalier T . Adjuvant chemotherapy in completely resected non-small-cell lung cancer. J Clin Oncol 2005; 23: 3270–3278.

    Article  CAS  PubMed  Google Scholar 

  3. Patz EF Jr, Swensen SJ, Herndon JE 2nd . Estimate of lung cancer mortality from low-dose spiral computed tomography screening trials: implications for current mass screening recommendations. J Clin Oncol 2004; 22: 2202–2206.

    Article  PubMed  Google Scholar 

  4. Herman JG, Baylin SB . Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349: 2042–2054.

    Article  CAS  PubMed  Google Scholar 

  5. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG . Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001; 10: 687–692.

    Article  CAS  PubMed  Google Scholar 

  6. Greenburg G, Hay ED . Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 1982; 95: 333–339.

    Article  CAS  PubMed  Google Scholar 

  7. Stoker M, Perryman M . An epithelial scatter factor released by embryo fibroblasts. J Cell Sci 1985; 77: 209–223.

    CAS  PubMed  Google Scholar 

  8. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  9. Liu LK, Jiang XY, Zhou XX, Wang DM, Song XL, Jiang HB . Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod Pathol 2010; 23: 213–224.

    Article  PubMed  Google Scholar 

  10. Hu L, Lau SH, Tzang CH, Wen JM, Wang W, Xie D et al. Association of Vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene 2004; 23: 298–302.

    Article  CAS  PubMed  Google Scholar 

  11. Wei J, Xu G, Wu M, ang Y, Li Q, Liu P et al. Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer Res 2008; 28: 327–334.

    CAS  PubMed  Google Scholar 

  12. Wang JW, Peng SY, Li JT, Wang Y, Zhang ZP, Cheng Y et al. Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1. Cancer Lett 2009; 281: 71–81.

    Article  CAS  PubMed  Google Scholar 

  13. Singh S, Sadacharan S, Su S, Belldegrun A, Persad S, Singh G . Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res 2003; 63: 2306–2311.

    CAS  PubMed  Google Scholar 

  14. Liu Z, Brattain MG, Appert H . Differential display of reticulocalbin in the highly invasive cell line, MDA-MB-435, versus the poorly invasive cell line, MCF-7. Biochem Biophys Res Commun 1997; 231: 283–289.

    Article  CAS  PubMed  Google Scholar 

  15. Chang L, Goldman RD . Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 2004; 5: 601–613.

    Article  CAS  PubMed  Google Scholar 

  16. Zeisberg M, Neilson EG . Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009; 119: 1429–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soltermann A, Tischler V, Arbogast S, Braun J, Probst-Hensch N, Weder W et al. Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. Clin Cancer Res 2008; 14: 7430–7437.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Saad S, Al-Shibli K, Donnem T, Persson M, Bremnes RM, Busund LT . The prognostic impact of NF-kappaB p105, vimentin, E-cadherin and Par6 expression in epithelial and stromal compartment in non-small-cell lung cancer. Br J Cancer 2008; 99: 1476–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dauphin M, Barbe C, Lemaire S, Nawrocki-Raby B, Lagonotte E, Delepine G et al. Vimentin expression predicts the occurrence of metastases in non small cell lung carcinomas. Lung Cancer 2013; 81: 117–122.

    Article  PubMed  Google Scholar 

  20. Li QF, Spinelli AM, Wang R, Anfinogenova Y, Singer HA, Tang DD . Critical role of vimentin phosphorylation at Ser-56 by p21-activated kinase in vimentin cytoskeleton signaling. J Biol Chem 2006; 281: 34716–34724.

    Article  CAS  PubMed  Google Scholar 

  21. Mendez MG, Kojima S, Goldman RD . Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 2010; 24: 1838–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsuruta D, Jones JC . The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J Cell Sci 2003; 116: 4977–4984.

    Article  CAS  PubMed  Google Scholar 

  23. Kreis S, Schonfeld HJ, Melchior C, Steiner B, Kieffer N . The intermediate filament protein vimentin binds specifically to a recombinant integrin alpha2/beta1 cytoplasmic tail complex and co-localizes with native alpha2/beta1 in endothelial cell focal adhesions. Exp Cell Res 2005; 305: 110–121.

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharya R, Gonzalez AM, Debiase PJ, Trejo HE, Goldman RD, Flitney FW et al. Recruitment of vimentin to the cell surface by beta3 integrin and plectin mediates adhesion strength. J Cell Sci 2009; 122: 1390–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. White DE, Kurpios NA, Zuo D, Hassell JA, Blaess S, Mueller U et al. Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 2004; 6: 159–170.

    Article  CAS  PubMed  Google Scholar 

  26. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2000; 2: 249–256.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R, Bolshakov S et al. Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 2011; 30: 457–470.

    Article  CAS  PubMed  Google Scholar 

  28. Ivaska J, Vuoriluoto K, Huovinen T, Izawa I, Inagaki M, Parker PJ . PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J 2005; 24: 3834–3845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Helfand BT, Mendez MG, Murthy SN, Shumaker DK, Grin B, Mahammad S et al. Vimentin organization modulates the formation of lamellipodia. Mol Biol Cell 2011; 22: 1274–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abe K, Rossman KL, Liu B, Ritola KD, Chiang D, Campbell SL et al. Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 2000; 275: 10141–10149.

    Article  CAS  PubMed  Google Scholar 

  31. Miller SL, Antico G, Raghunath PN, Tomaszewski JE, Clevenger CV . Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene 2007; 26: 4668–4678.

    Article  CAS  PubMed  Google Scholar 

  32. Lai SY, Ziober AF, Lee MN, Cohen NA, Falls EM, Ziober BL . Activated Vav2 modulates cellular invasion through Rac1 and Cdc42 in oral squamous cell carcinoma. Oral Oncol 2008; 44: 683–688.

    Article  CAS  PubMed  Google Scholar 

  33. Marignani PA, Carpenter CL . Vav2 is required for cell spreading. J Cell Biol 2001; 154: 177–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tamas P, Solti Z, Bauer P, Illés A, Sipeki S, Bauer A et al. Mechanism of epidermal growth factor regulation of Vav2, a guanine nucleotide exchange factor for Rac. J Biol Chem 2003; 278: 5163–5171.

    Article  CAS  PubMed  Google Scholar 

  35. Ahn J, Truesdell P, Meens J, Kadish C, Yang X, Boag AH et al. Fer protein-tyrosine kinase promotes lung adenocarcinoma cell invasion and tumor metastasis. Mol Cancer Res 2013; 11: 952–963.

    Article  CAS  PubMed  Google Scholar 

  36. Bershadsky AD, Tint IS, Svitkina TM . Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts. Cell Motil Cytoskeleton 1987; 8: 274–283.

    Article  CAS  PubMed  Google Scholar 

  37. Seifert GJ, Lawson D, Wiche G . Immunolocalization of the intermediate filament-associated protein plectin at focal contacts and actin stress fibers. Eur J Cell Biol 1992; 59: 138–147.

    CAS  PubMed  Google Scholar 

  38. Gonzales M, Weksler B, Tsuruta D, Goldman RD, Yoon KJ, Hopkinson SB et al. Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol Biol Cell 2001; 12: 85–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burgstaller G, Gregor M, Winter L, Wiche G . Keeping the vimentin network under control: cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol Biol Cell 2010; 21: 3362–3375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan KT, Bennin DA, Huttenlocher A . Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem 2010; 285: 11418–11426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lim JA, Hwang SH, Kim MJ, Kim SS, Kim HS . N-terminal cleavage fragment of focal adhesion kinase is required to activate the survival signalling pathway in cultured myoblasts under oxidative stress. FEBS J 2012; 279: 3573–3583.

    Article  CAS  PubMed  Google Scholar 

  42. Liu BP, Burridge K . Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not beta1 integrins. Mol Cell Biol 2000; 20: 7160–7169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schuebel KE, Bustelo XR, Nielsen DA, Song BJ, Barbacid M, Goldman D et al. Isolation and characterization of murine vav2, a member of the vav family of proto-oncogenes. Oncogene 1996; 13: 363–371.

    CAS  PubMed  Google Scholar 

  44. Schuebel KE, Movilla N, Rosa JL, Bustelo XR . Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J 1998; 17: 6608–6621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wittmann T, Bokoch GM, Waterman-Storer CM . Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol 2003; 161: 845–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rottner K, Hall A, Small JV . Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 1999; 9: 640–648.

    Article  CAS  PubMed  Google Scholar 

  47. Deakin NO, Ballestrem C, Turner CE . Paxillin and Hic-5 interaction with vinculin is differentially regulated by Rac1 and RhoA. PLoS ONE 2012; 7: e37990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carr HS, Morris CA, Menon S, Song EH, Frost JA . Rac1 controls the subcellular localization of the Rho guanine nucleotide exchange factor Net1A to regulate focal adhesion formation and cell spreading. Mol Cell Bio 2013; 33: 622–634.

    Article  CAS  Google Scholar 

  49. Nobes CD, Hall A . Rho rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995; 81: 53–62.

    Article  CAS  PubMed  Google Scholar 

  50. Citterio C, Menacho-Marquez M, Garcia-Escudero R, Larive RM, Barreiro O, Sánchez-Madrid F et al. The rho exchange factors vav2 and vav3 control a lung metastasis-specific transcriptional program in breast cancer cells. Sci Signal 2012; 5: ra71.

    Article  PubMed  Google Scholar 

  51. Yamauchi J, Miyamoto Y, Tanoue A, Shooter EM, Chan JR . Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration. Proc Natl Acad Sci USA 2005; 102: 14889–14894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chang F, Lemmon CA, Park D, Romer LH . FAK potentiates Rac1 activation and localization to matrix adhesion sites: a role for betaPIX. Mol Biol Cell 2007; 18: 253–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Charrasse S, Comunale F, Fortier M, Portales-Casamar E, Debant A, Gauthier-Rouviere C . M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Mol Biol Cell 2007; 18: 1734–1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garrett TA, Van Buul JD, Burridge K . VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res 2007; 313: 3285–3297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kallergi G, Agelaki S, Markomanolaki H, Georgoulias V, Stournaras C . Activation of FAK/PI3K/Rac1 signaling controls actin reorganization and inhibits cell motility in human cancer cells. Cell Physiol Biochem 2007; 20: 977–986.

    Article  CAS  PubMed  Google Scholar 

  56. Choma DP, Milano V, Pumiglia KM, DiPersio CM . Integrin alpha3beta1-dependent activation of FAK/Src regulates Rac1-mediated keratinocyte polarization on laminin-5. J Invest Dermatol 2007; 127: 31–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (1R01CA1428580) awarded to AIM and through a Ruth L Kirschstein National Research Service Award (1F32CA168112-01) awarded to LSH Research reported in this publication was supported in part by the Winship and Emory Integrated Cellular Imaging Core and NIH/NCI under award number P30CA138292. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We would like to thank the Custom Cloning Core at Emory University for generating the mutant FAK constructs and Doris Powell in the laboratory of Paula Vertino for her technical assistance with the quantitative RT-PCR experiments. We would also like to thank Anthea Hammond for reviewing this manuscript. In addition, we thank Keith Burridge at the University of North Carolina for generously supplying us with the VAV2 plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A I Marcus.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Havel, L., Kline, E., Salgueiro, A. et al. Vimentin regulates lung cancer cell adhesion through a VAV2–Rac1 pathway to control focal adhesion kinase activity. Oncogene 34, 1979–1990 (2015). https://doi.org/10.1038/onc.2014.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.123

This article is cited by

Search

Quick links