Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis

Abstract

Tumor–stromal interaction is a dynamic process that promotes tumor growth and metastasis via cell–cell interaction and extracellular vesicles. Recent studies demonstrate that stromal fibroblast-derived molecular signatures can be used to predict disease progression and drug resistance. To identify the epigenetic role of stromal noncoding RNAs in tumor–stromal interactions in the tumor microenvironment, we performed microRNA profiling of patient cancer-associated prostate stromal fibroblasts isolated by laser capture dissection microscopy and in bone-associated stromal models. We found specific upregulation of miR-409-3p and miR-409-5p located within the embryonically and developmentally regulated DLK1-DIO3 (delta-like 1 homolog-deiodinase, iodothyronine 3) cluster on human chromosome 14. The findings in cell lines were further validated in human prostate cancer tissues. Strikingly, ectopic expression of miR-409 in normal prostate fibroblasts conferred a cancer-associated stroma-like phenotype and led to the release of miR-409 via extracellular vesicles to promote tumor induction and epithelial-to-mesenchymal transition in vitro and in vivo. miR-409 promoted tumorigenesis through repression of tumor suppressor genes such as Ras suppressor 1 and stromal antigen 2. Thus, stromal fibroblasts derived miR-409-induced tumorigenesis, epithelial-to-mesenchymal transition and stemness of the epithelial cancer cells in vivo. Therefore, miR-409 appears to be an attractive therapeutic target to block the vicious cycle of tumor–stromal interactions that plagues prostate cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 848–851.

    Article  CAS  PubMed  Google Scholar 

  2. Zong Y, Huang J, Sankarasharma D, Morikawa T, Fukayama M, Epstein JI et al. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling. Proc Natl Acad Sci USA 2012; 109: E3395–E3404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dakhova O, Ozen M, Creighton CJ, Li R, Ayala G, Rowley D et al. Global gene expression analysis of reactive stroma in prostate cancer. Clin Cancer Res 2009; 15: 3979–3989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sung SY, Hsieh CL, Law A, Zhau HE, Pathak S, Multani AS et al. Coevolution of prostate cancer and bone stroma in three-dimensional coculture: implications for cancer growth and metastasis. Cancer Res 2008; 68: 9996–10003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chung LW, Baseman A, Assikis V, Zhau HE . Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 2005; 173: 10–20.

    Article  PubMed  Google Scholar 

  6. Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009; 69: 5601–5609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morello M, Minciacchi VR, de Candia P, Yang J, Posadas E, Kim H et al. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 2013; 12: 3526–3536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee RC, Ambros V . An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862–864.

    Article  CAS  PubMed  Google Scholar 

  9. Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M et al. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle 2010; 9: 4387–4398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 2013; 15: 284–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hagan JP, O'Neill BL, Stewart CL, Kozlov SV, Croce CM . At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS One 2009; 4: e4352.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 2010; 465: 175–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu L, Luo GZ, Yang W, Zhao X, Zheng Q, Lv Z et al. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J Biol Chem 2010; 285: 19483–19490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lim L, Balakrishnan A, Huskey N, Jones KD, Jodari M, Ng R et al. MiR-494 within an oncogenic MicroRNA megacluster regulates G1/S transition in liver tumorigenesis through suppression of MCC. Hepatology 2014; 59: 202–215.

    Article  CAS  PubMed  Google Scholar 

  15. Luk JM, Burchard J, Zhang C, Liu AM, Wong KF, Shek FH et al. DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. J Biol Chem 2011; 286: 30706–30713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haga CL, Phinney DG . MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. J Biol Chem 2012; 287: 42695–42707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lempiainen H, Couttet P, Bolognani F, Muller A, Dubost V, Luisier R et al. Identification of Dlk1-Dio3 imprinted gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion. Toxicol Sci 2013; 131: 375–386.

    Article  PubMed  Google Scholar 

  18. Formosa A, Markert EK, Lena AM, Italiano D, Finazzi-Agro E, Levine AJ et al. MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene (e-pub ahead of print 28 October 2014; doi:10.1038/onc.2013.451).

    Article  PubMed  Google Scholar 

  19. Hu P, Chu GC, Zhu G, Yang H, Luthringer D, Prins G et al. Multiplexed quantum dot labeling of activated c-Met signaling in castration-resistant human prostate cancer. PLoS ONE 2011; 6: e28670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang J, Ying G, Wang J, Jung Y, Lu J, Zhu J et al. Characterization of phosphoglycerate kinase-1 expression of stromal cells derived from tumor microenvironment in prostate cancer progression. Cancer Res 2010; 70: 471–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barron DA, Rowley DR . The reactive stroma microenvironment and prostate cancer progression. Endocr Relat Cancer 2012; 19: R187–R204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE et al. Beta2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 2011; 71: 2600–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol 2012; 181: 1573–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen HC, Xie W, Yang M, Hsieh CL, Drouin S, Lee GS et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate 2013; 73: 346–354.

    Article  CAS  PubMed  Google Scholar 

  25. Josson S, Sung SY, Lao K, Chung LW, Johnstone PA . Radiation modulation of microRNA in prostate cancer cell lines. Prostate 2008; 68: 1599–1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gross M, Top I, Laux I, Katz J, Curran J, Tindell C et al. Beta-2-microglobulin is an androgen-regulated secreted protein elevated in serum of patients with advanced prostate cancer. Clin Cancer Res 2007; 13: 1979–1986.

    Article  CAS  PubMed  Google Scholar 

  27. Freeman MR, Li Q, Chung LW . Can stroma reaction predict cancer lethality? Clin Cancer Res 2013; 19: 4905–4907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez-Nieves R, Desantis AI, Cutler ML . Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and -independent mechanisms. J Cell Commun Signal 2013; 7: 279–293.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dougherty GW, Jose C, Gimona M, Cutler ML . The Rsu-1-PINCH1-ILK complex is regulated by Ras activation in tumor cells. Eur J Cell Biol 2008; 87: 721–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Becker-Santos DD, Guo Y, Ghaffari M, Vickers ED, Lehman M, Altamirano-Dimas M et al. Integrin-linked kinase as a target for ERG-mediated invasive properties in prostate cancer models. Carcinogenesis 2012; 33: 2558–2567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 2011; 333: 1039–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim MS, Kim SS, Je EM, Yoo NJ, Lee SH . Mutational and expressional analyses of STAG2 gene in solid cancers. Neoplasma 2012; 59: 524–529.

    Article  CAS  PubMed  Google Scholar 

  33. Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W . Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 2004; 22: 405–414.

    Article  CAS  PubMed  Google Scholar 

  34. Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 1994; 54: 2577–2581.

    CAS  PubMed  Google Scholar 

  35. Nomura T, Huang WC, Zhau HE, Wu D, Xie Z, Mimata H et al. Beta2-microglobulin promotes the growth of human renal cell carcinoma through the activation of the protein kinase A, cyclic AMP-responsive element-binding protein, and vascular endothelial growth factor axis. Clin Cancer Res 2006; 12: 7294–7305.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from P01-CA98912, DAMD-17-03-02-0033, RO1-CA122602 (LWKC) and TMU102-AE-B01, NSC102-2320-B-039-058, and MOHW103-TD-B-111-01 (S-YS). Dr Haga is funded by the TSRI Stem Cell fellowship. We thank Dr Ladan Fazli for providing the Gleason score tissue array. We also thank Dror Berel for helping with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L W K Chung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Josson, S., Gururajan, M., Sung, S. et al. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene 34, 2690–2699 (2015). https://doi.org/10.1038/onc.2014.212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.212

This article is cited by

Search

Quick links