Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification

Subjects

Abstract

Cancer is associated with strong changes in lipid metabolism. For instance, normal cells take up fatty acids (FAs) from the circulation, while tumour cells generate their own and become dependent on de novo FA synthesis, which could provide a vulnerability to target tumour cells. Betulinic acid (BetA) is a natural compound that selectively kills tumour cells through an ill-defined mechanism that is independent of BAX and BAK, but depends on mitochondrial permeability transition-pore opening. Here we unravel this pathway and show that BetA inhibits the activity of steroyl-CoA-desaturase (SCD-1). This enzyme is overexpressed in tumour cells and critically important for cells that utilize de novo FA synthesis as it converts newly synthesized saturated FAs to unsaturated FAs. Intriguingly, we find that inhibition of SCD-1 by BetA or, alternatively, with a specific SCD-1 inhibitor directly and rapidly impacts on the saturation level of cardiolipin (CL), a mitochondrial lipid that has important structural and metabolic functions and at the same time regulates mitochondria-dependent cell death. As a result of the enhanced CL saturation mitochondria of cancer cells, but not normal cells that do not depend on de novo FA synthesis, undergo ultrastructural changes, release cytochrome c and quickly induce cell death. Importantly, addition of unsaturated FAs circumvented the need for SCD-1 activity and thereby prevented BetA-induced CL saturation and subsequent cytotoxicity, supporting the importance of this novel pathway in the cytotoxicity induced by BetA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Swinnen JV, Brusselmans K, Verhoeven G . Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 2006; 9: 358–365.

    Article  CAS  PubMed  Google Scholar 

  2. DeBerardinis RJ, Thompson CB . Cellular metabolism and disease: what do metabolic outliers teach us? Cell 2012; 148: 1132–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santos CR, Schulze A . Lipid metabolism in cancer. FEBS J 2012; 279: 2610–2623.

    Article  CAS  PubMed  Google Scholar 

  4. Medes G, Thomas A, Weinhouse S . Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 1953; 13: 27–29.

    CAS  PubMed  Google Scholar 

  5. Ookhtens M, Kannan R, Lyon I, Baker N . Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol 1984; 247: R146–R153.

    CAS  PubMed  Google Scholar 

  6. Menendez JA, Lupu R . Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7: 763–777.

    Article  CAS  PubMed  Google Scholar 

  7. Li JN, Mahmoud MA, Han WF, Ripple M, Pizer ES . Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia. Exp Cell Res 2000; 261: 159–165.

    Article  CAS  PubMed  Google Scholar 

  8. Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S et al. Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer 2000; 88: 176–179.

    Article  CAS  PubMed  Google Scholar 

  9. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB . ATP citrate lyase is an important component of cell growth and transformation. Oncogene 2005; 24: 6314–6322.

    Article  CAS  PubMed  Google Scholar 

  10. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8: 311–321.

    Article  CAS  PubMed  Google Scholar 

  11. Kumar-Sinha C, Ignatoski KW, Lippman ME, Ethier SP, Chinnaiyan AM . Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Res 2003; 63: 132–139.

    CAS  PubMed  Google Scholar 

  12. Scaglia N, Igal RA . Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells. J Biol Chem 2005; 280: 25339–25349.

    Article  CAS  PubMed  Google Scholar 

  13. Scaglia N, Caviglia JM, Igal RA . High stearoyl-CoA desaturase protein and activity levels in simian virus 40 transformed-human lung fibroblasts. Biochim Biophys Acta 2005; 1687: 141–151.

    Article  CAS  PubMed  Google Scholar 

  14. Paton CM, Ntambi JM . Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 2009; 297: E28–E37.

    Article  CAS  PubMed  Google Scholar 

  15. Scaglia N, Chisholm JW, Igal RA . Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS One 2009; 4: e6812.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Igal RA . Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis 2010; 31: 1509–1515.

    Article  CAS  PubMed  Google Scholar 

  17. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C et al. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett 2002; 175: 17–25.

    Article  CAS  PubMed  Google Scholar 

  18. Rzeski W, Stepulak A, Szymanski M, Sifringer M, Kaczor J, Wejksza K et al. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2006; 374: 11–20.

    Article  CAS  PubMed  Google Scholar 

  19. Mullauer FB, Kessler JH, Medema JP . Betulinic acid, a natural compound with potent anticancer effects. Anticancer Drugs 2010; 21: 215–227.

    Article  CAS  PubMed  Google Scholar 

  20. Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M et al. Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res 1997; 57: 4956–4964.

    CAS  PubMed  Google Scholar 

  21. Fulda S, Susin SA, Kroemer G, Debatin KM . Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res 1998; 58: 4453–4460.

    CAS  PubMed  Google Scholar 

  22. Kessler JH, Mullauer FB, de Roo GM, Medema JP . Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett 2007; 251: 132–145.

    Article  CAS  PubMed  Google Scholar 

  23. Mullauer FB, Kessler JH, Medema JP . Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion. Apoptosis 2009; 14: 191–202.

    Article  CAS  PubMed  Google Scholar 

  24. Fry M, Green DE . Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 1981; 256: 1874–1880.

    CAS  PubMed  Google Scholar 

  25. Gonzalvez F, Gottlieb E . Cardiolipin: setting the beat of apoptosis. Apoptosis 2007; 12: 877–885.

    Article  CAS  PubMed  Google Scholar 

  26. Houtkooper RH, Vaz FM . Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 2008; 65: 2493–2506.

    Article  CAS  PubMed  Google Scholar 

  27. Patil VA, Greenberg ML . Cardiolipin-mediated cellular signaling. Adv Exp Med Biol 2013; 991: 195–213.

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ et al. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 2008; 183: 681–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schug ZT, Gottlieb E . Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 2009; 1788: 2022–2031.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang T, Saghatelian A . Emerging roles of lipids in BCL-2 family-regulated apoptosis. Biochim Biophys Acta 2013; 1831: 1542–1554.

    Article  CAS  PubMed  Google Scholar 

  31. Paradies G, Paradies V, De B V, Ruggiero FM, Petrosillo G . Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 2014; 1837: 408–417.

    Article  CAS  PubMed  Google Scholar 

  32. Barth PG, Scholte HR, Berden JA, Van der Klei-Van Moorsel JM, Luyt-Houwen IE, Van 't Veer-Korthof ET et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 1983; 62: 327–355.

    Article  CAS  PubMed  Google Scholar 

  33. Houtkooper RH, Rodenburg RJ, Thiels C, van LH, Stet F, Poll-The BT et al. Cardiolipin and monolysocardiolipin analysis in fibroblasts, lymphocytes, and tissues using high-performance liquid chromatography-mass spectrometry as a diagnostic test for Barth syndrome. Anal Biochem 2009; 387: 230–237.

    Article  CAS  PubMed  Google Scholar 

  34. Ren M, Phoon CK, Schlame M . Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 2014; 55C: 1–16.

    Article  Google Scholar 

  35. Shimabukuro M, Zhou YT, Levi M, Unger RH . Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 1998; 95: 2498–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Listenberger LL, Han X, Lewis SE, Cases S, Farese Jr RV, Ory DS et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 2003; 100: 3077–3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mullauer FB, van BL, Daalhuisen JB, Ten Brink MS, Storm G, Medema JP et al. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs 2011; 22: 223–233.

    Article  CAS  PubMed  Google Scholar 

  38. Coleman RA, Lee DP . Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 2004; 43: 134–176.

    Article  CAS  PubMed  Google Scholar 

  39. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN . Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 2008; 49: 2545–2556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruggieri S, Roblin R, Black PH . Lipids of whole cells and plasma membrane fractions from Balb/c3T3, SV3T3, and concanavalin A-selected revertant cells. J Lipid Res 1979; 20: 760–771.

    CAS  PubMed  Google Scholar 

  41. Bougnoux P, Chajes V, Lanson M, Hacene K, Body G, Couet C et al. Prognostic significance of tumor phosphatidylcholine stearic acid level in breast carcinoma. Breast Cancer Res Treat 1992; 20: 185–194.

    Article  CAS  PubMed  Google Scholar 

  42. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004; 113: 1774–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pelicano H, Carney D, Huang P . ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004; 7: 97–110.

    Article  CAS  PubMed  Google Scholar 

  44. Nogueira V, Hay N . Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 2013; 19: 4309–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Warburg O . On respiratory impairment in cancer cells. Science 1956; 124: 269–270.

    CAS  PubMed  Google Scholar 

  46. Ward PS, Thompson CB . Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clarke SL, Bowron A, Gonzalez IL, Groves SJ, Newbury-Ecob R, Clayton N et al. Barth syndrome. Orphanet J Rare Dis 2013; 8: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA 2014; 111: 10580–10585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Acehan D, Malhotra A, Xu Y, Ren M, Stokes DL, Schlame M . Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys J 2011; 100: 2184–2192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cory S, Adams JM . The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2: 647–656.

    Article  CAS  PubMed  Google Scholar 

  51. Tuominen EK, Wallace CJ, Kinnunen PK . Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage. J Biol Chem 2002; 277: 8822–8826.

    Article  CAS  PubMed  Google Scholar 

  52. Orrenius S, Zhivotovsky B, Nicotera P . Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003; 4: 552–565.

    Article  CAS  PubMed  Google Scholar 

  53. Huttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L et al. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011; 11: 369–381.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 2005; 1: 223–232.

    Article  CAS  PubMed  Google Scholar 

  55. Jourdain A, Martinou JC . Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 2009; 41: 1884–1889.

    Article  CAS  PubMed  Google Scholar 

  56. Landes T, Martinou JC . Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission. Biochim Biophys Acta 2011; 1813: 540–545.

    Article  CAS  PubMed  Google Scholar 

  57. Martinou JC, Youle RJ . Which came first, the cytochrome c release or the mitochondrial fission? Cell Death Differ 2006; 13: 1291–1295.

    Article  CAS  PubMed  Google Scholar 

  58. Pellegrini L, Scorrano L . A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death Differ 2007; 14: 1275–1284.

    Article  CAS  PubMed  Google Scholar 

  59. Li J, Ding SF, Habib NA, Fermor BF, Wood CB, Gilmour RS . Partial characterization of a cDNA for human stearoyl-CoA desaturase and changes in its mRNA expression in some normal and malignant tissues. Int J Cancer 1994; 57: 348–352.

    Article  CAS  PubMed  Google Scholar 

  60. Lu J, Pei H, Kaeck M, Thompson HJ . Gene expression changes associated with chemically induced rat mammary carcinogenesis. Mol Carcinog 1997; 20: 204–215.

    Article  CAS  PubMed  Google Scholar 

  61. Thai SF, Allen JW, DeAngelo AB, George MH, Fuscoe JC . Detection of early gene expression changes by differential display in the livers of mice exposed to dichloroacetic acid. Carcinogenesis 2001; 22: 1317–1322.

    Article  CAS  PubMed  Google Scholar 

  62. Yahagi N, Shimano H, Hasegawa K, Ohashi K, Matsuzaka T, Najima Y et al. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur J Cancer 2005; 41: 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  63. Morgan-Lappe SE, Tucker LA, Huang X, Zhang Q, Sarthy AV, Zakula D et al. Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res 2007; 67: 4390–4398.

    Article  CAS  PubMed  Google Scholar 

  64. Scaglia N, Igal RA . Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol 2008; 33: 839–850.

    CAS  PubMed  Google Scholar 

  65. Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, Avances C et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther 2010; 9: 1740–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roongta UV, Pabalan JG, Wang X, Ryseck RP, Fargnoli J, Henley BJ et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res 2011; 9: 1551–1561.

    Article  CAS  PubMed  Google Scholar 

  67. Potze L, Mullauer FB, Colak S, Kessler JH, Medema JP . Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response. Cell Death Dis 2014; 5: e1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Waterhouse NJ, Trapani JA . A new quantitative assay for cytochrome c release in apoptotic cells. Cell Death Differ 2003; 10: 853–855.

    Article  CAS  PubMed  Google Scholar 

  69. Valianpour F, Selhorst JJ, van Lint LE, van Gennip AH, Wanders RJ, Kemp S . Analysis of very long-chain fatty acids using electrospray ionization mass spectrometry. Mol Genet Metab 2003; 79: 189–196.

    Article  CAS  PubMed  Google Scholar 

  70. Engelen M, Ofman R, Mooijer PA, Poll-The BT, Wanders RJ, Kemp S . Cholesterol-deprivation increases mono-unsaturated very long-chain fatty acids in skin fibroblasts from patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta 2008; 3: 105–111.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Inge Dijkstra, Rob Ofman, Femke Beers-Stet for technical assistance and Louis Vermeulen for his valuable scientific input and helpful discussions. This work was supported by a grant of the Stichting Nationaal Fonds tegen Kanker (SNFK), Amsterdam, The Netherlands (LP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P Medema.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potze, L., Di Franco, S., Grandela, C. et al. Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification. Oncogene 35, 427–437 (2016). https://doi.org/10.1038/onc.2015.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.102

This article is cited by

Search

Quick links