Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Role of Merlin/NF2 inactivation in tumor biology

Abstract

Merlin (Moesin-ezrin-radixin-like protein, also known as schwannomin) is a tumor suppressor protein encoded by the neurofibromatosis type 2 gene NF2. Loss of function mutations or deletions in NF2 cause neurofibromatosis type 2 (NF2), a multiple tumor forming disease of the nervous system. NF2 is characterized by the development of bilateral vestibular schwannomas. Patients with NF2 can also develop schwannomas on other cranial and peripheral nerves, as well as meningiomas and ependymomas. The only potential treatment is surgery/radiosurgery, which often results in loss of function of the involved nerve. There is an urgent need for chemotherapies that slow or eliminate tumors and prevent their formation in NF2 patients. Interestingly NF2 mutations and merlin inactivation also occur in spontaneous schwannomas and meningiomas, as well as other types of cancer including mesothelioma, glioma multiforme, breast, colorectal, skin, clear cell renal cell carcinoma, hepatic and prostate cancer. Except for malignant mesotheliomas, the role of NF2 mutation or inactivation has not received much attention in cancer, and NF2 might be relevant for prognosis and future chemotherapeutic approaches. This review discusses the influence of merlin loss of function in NF2-related tumors and common human cancers. We also discuss the NF2 gene status and merlin signaling pathways affected in the different tumor types and the molecular mechanisms that lead to tumorigenesis, progression and pharmacological resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Evans DG . Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis 2009; 4: 16.

    PubMed  PubMed Central  Google Scholar 

  2. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 1993; 363: 515–521.

    CAS  PubMed  Google Scholar 

  3. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993; 72: 791–800.

    CAS  PubMed  Google Scholar 

  4. Asthagiri AR, Parry DM, Butman JA, Kim HJ, Tsilou ET, Zhuang Z et al. Neurofibromatosis type 2. Lancet 2009; 373: 1974–1986.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiemels J, Wrensch M, Claus EB . Epidemiology and etiology of meningioma. J Neuro-oncol 2010; 99: 307–314.

    Google Scholar 

  6. Bydon M, Mathios D, Aguayo-Alvarez JJ, Ho C, Gokaslan ZL, Bydon A . Multiple primary intramedullary ependymomas: a case report and review of the literature. Spine J 2013; 13: 1379–1386.

    PubMed  Google Scholar 

  7. Plotkin SR, O'Donnell CC, Curry WT, Bove CM, MacCollin M, Nunes FP . Spinal ependymomas in neurofibromatosis Type 2: a retrospective analysis of 55 patients. J Neurosurg Spine 2011; 14: 543–547.

    PubMed  Google Scholar 

  8. Lloyd SK, Evans DG . Neurofibromatosis type 2 (NF2): diagnosis and management. Handbook Clin Neurol 2013; 115: 957–967.

    Google Scholar 

  9. Sperfeld AD, Hein C, Schroder JM, Ludolph AC, Hanemann CO . Occurrence and characterization of peripheral nerve involvement in neurofibromatosis type 2. Brain 2002; 125 (Pt 5): 996–1004.

    CAS  PubMed  Google Scholar 

  10. Schulz A, Baader SL, Niwa-Kawakita M, Jung MJ, Bauer R, Garcia C et al. Merlin isoform 2 in neurofibromatosis type 2-associated polyneuropathy. Nat Neurosci 2013; 16: 426–433.

    CAS  PubMed  Google Scholar 

  11. Schulz A, Zoch A, Morrison H . A neuronal function of the tumor suppressor protein merlin. Acta Neuropathol Commun 2014; 2: 82.

    PubMed  PubMed Central  Google Scholar 

  12. Aboukais R, Zairi F, Baroncini M, Bonne NX, Schapira S, Vincent C et al. Intracranial meningiomas and neurofibromatosis type 2. Acta Neurochirurgica 2013; 155: 997–1001 discussion.

    PubMed  Google Scholar 

  13. Gilbert MR, Ruda R, Soffietti R . Ependymomas in adults. Curr Neurol Neurosci Rep 2010; 10: 240–247.

    PubMed  Google Scholar 

  14. Xu HM, Gutmann DH . Merlin differentially associates with the microtubule and actin cytoskeleton. J Neurosci Res 1998; 51: 403–415.

    CAS  PubMed  Google Scholar 

  15. Gronholm M, Sainio M, Zhao F, Heiska L, Vaheri A, Carpen O . Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin. J Cell Sci 1999; 112 (Pt 6): 895–904.

    CAS  PubMed  Google Scholar 

  16. Nguyen R, Reczek D, Bretscher A . Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J Biol Chem 2001; 276: 7621–7629.

    CAS  PubMed  Google Scholar 

  17. Stamenkovic I, Yu Q . Merlin, a ‘magic’ linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival. Curr Protein Peptide Sci 2010; 11: 471–484.

    CAS  Google Scholar 

  18. Tang X, Jang SW, Wang X, Liu Z, Bahr SM, Sun SY et al. Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation. Nat Cell Biol 2007; 9: 1199–1207.

    CAS  PubMed  Google Scholar 

  19. Laulajainen M, Muranen T, Nyman TA, Carpen O, Gronholm M . Multistep phosphorylation by oncogenic kinases enhances the degradation of the NF2 tumor suppressor merlin. Neoplasia 2011; 13: 643–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Laulajainen M, Muranen T, Carpen O, Gronholm M . Protein kinase A-mediated phosphorylation of the NF2 tumor suppressor protein merlin at serine 10 affects the actin cytoskeleton. Oncogene 2008; 27: 3233–3243.

    CAS  PubMed  Google Scholar 

  21. Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 2001; 1: 63–72.

    CAS  PubMed  Google Scholar 

  22. Xiao GH, Beeser A, Chernoff J, Testa JR . p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 2002; 277: 883–886.

    CAS  PubMed  Google Scholar 

  23. Surace EI, Haipek CA, Gutmann DH . Effect of merlin phosphorylation on neurofibromatosis 2 (NF2) gene function. Oncogene 2004; 23: 580–587.

    CAS  PubMed  Google Scholar 

  24. Alfthan K, Heiska L, Gronholm M, Renkema GH, Carpen O . Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. J Biol Chem 2004; 279: 18559–18566.

    CAS  PubMed  Google Scholar 

  25. Jin H, Sperka T, Herrlich P, Morrison H . Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature 2006; 442: 576–579.

    CAS  PubMed  Google Scholar 

  26. Pearson MA, Reczek D, Bretscher A, Karplus PA . Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 2000; 101: 259–270.

    CAS  PubMed  Google Scholar 

  27. Scoles DR . The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys Acta 2008; 1785: 32–54.

    CAS  PubMed  Google Scholar 

  28. Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI . Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol 2007; 177: 893–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. James MF, Beauchamp RL, Manchanda N, Kazlauskas A, Ramesh V . A NHERF binding site links the betaPDGFR to the cytoskeleton and regulates cell spreading and migration. J Cell Sci 2004; 117 (Pt 14): 2951–2961.

    CAS  PubMed  Google Scholar 

  30. Yogesha SD, Sharff AJ, Giovannini M, Bricogne G, Izard T . Unfurling of the band 4.1, ezrin, radixin, moesin (FERM) domain of the merlin tumor suppressor. Protein Sci 2011; 20: 2113–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hennigan RF, Foster LA, Chaiken MF, Mani T, Gomes MM, Herr AB et al. Fluorescence resonance energy transfer analysis of merlin conformational changes. Mol Cell Biol 2010; 30: 54–67.

    CAS  PubMed  Google Scholar 

  32. Sher I, Hanemann CO, Karplus PA, Bretscher A . The tumor suppressor merlin controls growth in its open state, and phosphorylation converts it to a less-active more-closed state. Dev Cell 2012; 22: 703–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ali Khajeh J, Ju JH, Atchiba M, Allaire M, Stanley C, Heller WT et al. Molecular conformation of the full-length tumor suppressor NF2/Merlin-a small-angle neutron scattering study. J Mol Biol 2014; 426: 2755–2768.

    CAS  PubMed  Google Scholar 

  34. McClatchey AI, Saotome I, Ramesh V, Gusella JF, Jacks T . The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev 1997; 11: 1253–1265.

    CAS  PubMed  Google Scholar 

  35. Giovannini M, Robanus-Maandag E, van der Valk M, Niwa-Kawakita M, Abramowski V, Goutebroze L et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 2000; 14: 1617–1630.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalamarides M, Niwa-Kawakita M, Leblois H, Abramowski V, Perricaudet M, Janin A et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev 2002; 16: 1060–1065.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gehlhausen JR, Park SJ, Hickox AE, Shew M, Staser K, Rhodes SD et al. A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation. Hum Mol Genet 2014; 24: 1–8.

    PubMed  PubMed Central  Google Scholar 

  38. Kalamarides M, Peyre M, Giovannini M . Meningioma mouse models. J Neuro-oncol 2010; 99: 325–331.

    Google Scholar 

  39. Rangarajan A, Weinberg RA . Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 2003; 3: 952–959.

    CAS  PubMed  Google Scholar 

  40. Gusella JF, Ramesh V, MacCollin M, Jacoby LB . Merlin: the neurofibromatosis 2 tumor suppressor. Biochim Biophys Acta 1999; 1423: M29–M36.

    CAS  PubMed  Google Scholar 

  41. Schulz A, Kyselyova A, Baader SL, Jung MJ, Zoch A, Mautner VF et al. Neuronal merlin influences ERBB2 receptor expression on Schwann cells through neuregulin 1 type III signalling. Brain 2014; 137 (Pt 2): 420–432.

    PubMed  Google Scholar 

  42. Sainz J, Huynh DP, Figueroa K, Ragge NK, Baser ME, Pulst SM . Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum Mol Genet 1994; 3: 885–891.

    CAS  PubMed  Google Scholar 

  43. Gutmann DH, Giordano MJ, Fishback AS, Guha A . Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology 1997; 49: 267–270.

    CAS  PubMed  Google Scholar 

  44. Gonzalez-Gomez P, Bello MJ, Alonso ME, Lomas J, Arjona D, Campos JM et al. CpG island methylation in sporadic and neurofibromatis type 2-associated schwannomas. Clin Cancer Res 2003; 9: 5601–5606.

    CAS  PubMed  Google Scholar 

  45. Kino T, Takeshima H, Nakao M, Nishi T, Yamamoto K, Kimura T et al. Identification of the cis-acting region in the NF2 gene promoter as a potential target for mutation and methylation-dependent silencing in schwannoma. Genes Cells 2001; 6: 441–454.

    CAS  PubMed  Google Scholar 

  46. Koutsimpelas D, Ruerup G, Mann WJ, Brieger J . Lack of neurofibromatosis type 2 gene promoter methylation in sporadic vestibular schwannomas. ORL J Otorhinolaryngol Relat Spec 2012; 74: 33–37.

    CAS  PubMed  Google Scholar 

  47. Lomas J, Bello MJ, Arjona D, Alonso ME, Martinez-Glez V, Lopez-Marin I et al. Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas. Genes Chromosomes Cancer 2005; 42: 314–319.

    CAS  PubMed  Google Scholar 

  48. Riemenschneider MJ, Perry A, Reifenberger G . Histological classification and molecular genetics of meningiomas. Lancet Neurol 2006; 5: 1045–1054.

    CAS  PubMed  Google Scholar 

  49. Alonso ME, Bello MJ, Gonzalez-Gomez P, Arjona D, de Campos JM, Gutierrez M et al. Aberrant CpG island methylation of multiple genes in ependymal tumors. J Neuro-oncol 2004; 67: 159–165.

    Google Scholar 

  50. Kimura Y, Koga H, Araki N, Mugita N, Fujita N, Takeshima H et al. The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nat Med 1998; 4: 915–922.

    CAS  PubMed  Google Scholar 

  51. Goutagny S, Nault JC, Mallet M, Henin D, Rossi JZ, Kalamarides M . High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol 2014; 24: 184–189.

    CAS  PubMed  Google Scholar 

  52. Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 2001; 15: 968–980.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaw RJ, McClatchey AI, Jacks T . Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J Biol Chem 1998; 273: 7757–7764.

    CAS  PubMed  Google Scholar 

  54. Sainio M, Zhao F, Heiska L, Turunen O, den Bakker M, Zwarthoff E et al. Neurofibromatosis 2 tumor suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. J Cell Sci 1997; 110 (Pt 18): 2249–2260.

    CAS  PubMed  Google Scholar 

  55. Herrlich P, Morrison H, Sleeman J, Orian-Rousseau V, Konig H, Weg-Remers S et al. CD44 acts both as a growth- and invasiveness-promoting molecule and as a tumor-suppressing cofactor. Ann N Y Acad Sci 2000; 910: 106–118 discussion 18-20.

    CAS  PubMed  Google Scholar 

  56. Bai Y, Liu YJ, Wang H, Xu Y, Stamenkovic I, Yu Q . Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor activity of merlin. Oncogene 2007; 26: 836–850.

    CAS  PubMed  Google Scholar 

  57. Bourguignon LY, Gilad E, Peyrollier K, Brightman A, Swanson RA . Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes. J Neurochem 2007; 101: 1002–1017.

    CAS  PubMed  Google Scholar 

  58. Oliferenko S, Kaverina I, Small JV, Huber LA . Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth. J Cell Biol 2000; 148: 1159–1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bourguignon LY, Zhu H, Shao L, Chen YW . CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem 2000; 275: 1829–1838.

    CAS  PubMed  Google Scholar 

  60. Sherman LS, Gutmann DH . Merlin: hanging tumor suppression on the Rac. Trends Cell Biol 2001; 11: 442–444.

    CAS  PubMed  Google Scholar 

  61. Kaempchen K, Mielke K, Utermark T, Langmesser S, Hanemann CO . Upregulation of the Rac1/JNK signaling pathway in primary human schwannoma cells. Hum Mol Genet 2003; 12: 1211–1221.

    CAS  PubMed  Google Scholar 

  62. Nakai Y, Zheng Y, MacCollin M, Ratner N . Temporal control of Rac in Schwann cell-axon interaction is disrupted in NF2-mutant schwannoma cells. J Neurosci 2006; 26: 3390–3395.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Flaiz C, Ammoun S, Biebl A, Hanemann CO . Altered adhesive structures and their relation to RhoGTPase activation in merlin-deficient Schwannoma. Brain Pathol 2009; 19: 27–38.

    PubMed  Google Scholar 

  64. Okada T, Lopez-Lago M, Giancotti FG . Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 2005; 171: 361–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T . Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell 2003; 12: 841–849.

    CAS  PubMed  Google Scholar 

  66. Kissil JL, Johnson KC, Eckman MS, Jacks T . Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 2002; 277: 10394–10399.

    CAS  PubMed  Google Scholar 

  67. Thaxton C, Lopera J, Bott M, Baldwin ME, Kalidas P, Fernandez-Valle C . Phosphorylation of the NF2 tumor suppressor in Schwann cells is mediated by Cdc42-Pak and requires paxillin binding. Mol Cell Neurosci 2007; 34: 231–242.

    CAS  PubMed  Google Scholar 

  68. Sherman LS, Rizvi TA, Karyala S, Ratner N . CD44 enhances neuregulin signaling by Schwann cells. J Cell Biol 2000; 150: 1071–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ahmad Z, Brown CM, Patel AK, Ryan AF, Ongkeko R, Doherty JK . Merlin knockdown in human Schwann cells: clues to vestibular schwannoma tumorigenesis. Otol Neurotol 2010; 31: 460–466.

    PubMed  PubMed Central  Google Scholar 

  70. Hansen MR, Roehm PC, Chatterjee P, Green SH . Constitutive neuregulin-1/ErbB signaling contributes to human vestibular schwannoma proliferation. Glia 2006; 53: 593–600.

    PubMed  Google Scholar 

  71. Wickremesekera A, Hovens CM, Kaye AH . Expression of ErbB-1 and 2 in vestibular schwannomas. J Clin Neurosci 2007; 14: 1199–1206.

    CAS  PubMed  Google Scholar 

  72. Thaxton C, Lopera J, Bott M, Fernandez-Valle C . Neuregulin and laminin stimulate phosphorylation of the NF2 tumor suppressor in Schwann cells by distinct protein kinase A and p21-activated kinase-dependent pathways. Oncogene 2008; 27: 2705–2715.

    CAS  PubMed  Google Scholar 

  73. Garcia C, Gutmann DH . Nf2/Merlin controls spinal cord neural progenitor function in a Rac1/ErbB2-dependent manner. PLoS One 2014; 9: e97320.

    PubMed  PubMed Central  Google Scholar 

  74. Lallemand D, Manent J, Couvelard A, Watilliaux A, Siena M, Chareyre F et al. Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene 2009; 28: 854–865.

    CAS  PubMed  Google Scholar 

  75. Ammoun S, Schmid MC, Ristic N, Zhou L, Hilton D, Ercolano E et al. The role of insulin-like growth factors signaling in merlin-deficient human schwannomas. Glia 2012; 60: 1721–1733.

    PubMed  Google Scholar 

  76. Ammoun S, Flaiz C, Ristic N, Schuldt J, Hanemann CO . Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res 2008; 68: 5236–5245.

    CAS  PubMed  Google Scholar 

  77. Ammoun S, Cunliffe CH, Allen JC, Chiriboga L, Giancotti FG, Zagzag D et al. ErbB/HER receptor activation and preclinical efficacy of lapatinib in vestibular schwannoma. Neuro-oncology 2010; 12: 834–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fernandez-Valle C, Tang Y, Ricard J, Rodenas-Ruano A, Taylor A, Hackler E et al. Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 2002; 31: 354–362.

    CAS  PubMed  Google Scholar 

  79. Obremski VJ, Hall AM, Fernandez-Valle C . Merlin, the neurofibromatosis type 2 gene product, and beta1 integrin associate in isolated and differentiating Schwann cells. J Neurobiol 1998; 37: 487–501.

    CAS  PubMed  Google Scholar 

  80. Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG . Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol 2009; 29: 4235–4249.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bashour AM, Meng JJ, Ip W, MacCollin M, Ratner N . The neurofibromatosis type 2 gene product, merlin, reverses the F-actin cytoskeletal defects in primary human Schwannoma cells. Mol Cell Biol 2002; 22: 1150–1157.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pelton PD, Sherman LS, Rizvi TA, Marchionni MA, Wood P, Friedman RA et al. Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Oncogene 1998; 17: 2195–2209.

    CAS  PubMed  Google Scholar 

  83. Petrilli A, Copik A, Posadas M, Chang LS, Welling DB, Giovannini M et al. LIM domain kinases as potential therapeutic targets for neurofibromatosis type 2. Oncogene 2014; 33: 3571–3582.

    CAS  PubMed  Google Scholar 

  84. Bosco EE, Nakai Y, Hennigan RF, Ratner N, Zheng Y . NF2-deficient cells depend on the Rac1-canonical Wnt signaling pathway to promote the loss of contact inhibition of proliferation. Oncogene 2010; 29: 2540–2549.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou L, Ercolano E, Ammoun S, Schmid MC, Barczyk MA, Hanemann CO . Merlin-deficient human tumors show loss of contact inhibition and activation of Wnt/beta-catenin signaling linked to the PDGFR/Src and Rac/PAK pathways. Neoplasia 2011; 13: 1101–1112.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tikoo A, Varga M, Ramesh V, Gusella J, Maruta H . An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem 1994; 269: 23387–23390.

    CAS  PubMed  Google Scholar 

  87. Morrison H, Sperka T, Manent J, Giovannini M, Ponta H, Herrlich P . Merlin/neurofibromatosis type 2 suppresses growth by inhibiting the activation of Ras and Rac. Cancer Res 2007; 67: 520–527.

    CAS  PubMed  Google Scholar 

  88. Li N, Batzer A, Daly R, Yajnik V, Skolnik E, Chardin P et al. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 1993; 363: 85–88.

    CAS  PubMed  Google Scholar 

  89. Geissler KJ, Jung MJ, Riecken LB, Sperka T, Cui Y, Schacke S et al. Regulation of Son of sevenless by the membrane-actin linker protein ezrin. Proc Natl Acad Sci USA 2013; 110: 20587–20592.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ammoun S, Provenzano L, Zhou L, Barczyk M, Evans K, Hilton DA et al. Axl/Gas6/NFkappaB signalling in schwannoma pathological proliferation, adhesion and survival. Oncogene 2014; 33: 336–346.

    CAS  PubMed  Google Scholar 

  91. Houshmandi SS, Emnett RJ, Giovannini M, Gutmann DH . The neurofibromatosis 2 protein, merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner. Mol Cell Biol 2009; 29: 1472–1486.

    CAS  PubMed  Google Scholar 

  92. Ammoun S, Schmid MC, Zhou L, Hilton DA, Barczyk M, Hanemann CO . The p53/mouse double minute 2 homolog complex deregulation in merlin-deficient tumours. Mol Oncol 2015; 9: 236–248.

    CAS  PubMed  Google Scholar 

  93. Hilton DA, Ristic N, Hanemann CO . Activation of ERK, AKT and JNK signalling pathways in human schwannomas in situ. Histopathology 2009; 55: 744–749.

    PubMed  Google Scholar 

  94. Rong R, Tang X, Gutmann DH, Ye K . Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE-L. Proc Natl Acade Sci USA 2004; 101: 18200–18205.

    CAS  Google Scholar 

  95. Jacob A, Lee TX, Neff BA, Miller S, Welling B, Chang LS . Phosphatidylinositol 3-kinase/AKT pathway activation in human vestibular schwannoma. Otol Neurotol 2008; 29: 58–68.

    PubMed  Google Scholar 

  96. Mawrin C, Sasse T, Kirches E, Kropf S, Schneider T, Grimm C et al. Different activation of mitogen-activated protein kinase and Akt signaling is associated with aggressive phenotype of human meningiomas. Clin Cancer Res 2005; 11: 4074–4082.

    CAS  PubMed  Google Scholar 

  97. Ye K . Phosphorylation of merlin regulates its stability and tumor suppressive activity. Cell Adh Migr 2007; 1: 196–198.

    PubMed  PubMed Central  Google Scholar 

  98. Li Y, Tennekoon GI, Birnbaum M, Marchionni MA, Rutkowski JL . Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival. Mol Cell Neurosci 2001; 17: 761–767.

    PubMed  Google Scholar 

  99. Petrilli AM, Fuse MA, Donnan MS, Bott M, Sparrow NA, Tondera D et al. A chemical biology approach identified PI3K as a potential therapeutic target for neurofibromatosis type 2. Am J Transl Res 2014; 6: 471–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee TX, Packer MD, Huang J, Akhmametyeva EM, Kulp SK, Chen CS et al. Growth inhibitory and anti-tumour activities of OSU-03012, a novel PDK-1 inhibitor, on vestibular schwannoma and malignant schwannoma cells. Eur J Cancer 2009; 45: 1709–1720.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Johnson MD, Okedli E, Woodard A, Toms SA, Allen GS . Evidence for phosphatidylinositol 3-kinase-Akt-p7S6K pathway activation and transduction of mitogenic signals by platelet-derived growth factor in meningioma cells. J Neurosurg 2002; 97: 668–675.

    CAS  PubMed  Google Scholar 

  102. Bush ML, Oblinger J, Brendel V, Santarelli G, Huang J, Akhmametyeva EM et al. AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. Neuro-oncology 2011; 13: 983–999.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS . Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 2005; 280: 38879–38887.

    CAS  PubMed  Google Scholar 

  104. Jacob A, Oblinger J, Bush ML, Brendel V, Santarelli G, Chaudhury AR et al. Preclinical validation of AR42, a novel histone deacetylase inhibitor, as treatment for vestibular schwannomas. Laryngoscope 2012; 122: 174–189.

    CAS  PubMed  Google Scholar 

  105. Burns SS, Akhmametyeva EM, Oblinger JL, Bush ML, Huang J, Senner V et al. Histone deacetylase inhibitor AR-42 differentially affects cell-cycle transit in meningeal and meningioma cells, potently inhibiting NF2-deficient meningioma growth. Cancer Res 2013; 73: 792–803.

    CAS  PubMed  Google Scholar 

  106. Agnihotri S, Gugel I, Remke M, Bornemann A, Pantazis G, Mack SC et al. Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma. J Neurosurg 2014; 121: 1434–1445.

    CAS  PubMed  Google Scholar 

  107. James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 2009; 29: 4250–4261.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Giovannini M, Bonne NX, Vitte J, Chareyre F, Tanaka K, Adams R et al. mTORC1 inhibition delays growth of neurofibromatosis type 2 schwannoma. Neuro-oncology 2014; 16: 493–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006; 66: 1500–1508.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 2008; 5: e8.

    PubMed  PubMed Central  Google Scholar 

  111. James MF, Stivison E, Beauchamp R, Han S, Li H, Wallace MR et al. Regulation of mTOR complex 2 signaling in neurofibromatosis 2-deficient target cell types. Mol Cancer Res 2012; 10: 649–659.

    CAS  PubMed  Google Scholar 

  112. Petrilli A, Bott M, Fernandez-Valle C . Inhibition of SIRT2 in merlin/NF2-mutant Schwann cells triggers necrosis. Oncotarget 2013; 4: 2354–2365.

    PubMed  PubMed Central  Google Scholar 

  113. Muranen T, Gronholm M, Lampin A, Lallemand D, Zhao F, Giovannini M et al. The tumor suppressor merlin interacts with microtubules and modulates Schwann cell microtubule cytoskeleton. Hum Mol Genet 2007; 16: 1742–1751.

    CAS  PubMed  Google Scholar 

  114. Bensenor LB, Barlan K, Rice SE, Fehon RG, Gelfand VI . Microtubule-mediated transport of the tumor-suppressor protein Merlin and its mutants. Proc Natl Acad Sci USA. 2010; 107: 7311–7316.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pan D . The hippo signaling pathway in development and cancer. Dev Cell 2010; 19: 491–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Piccolo S, Dupont S, Cordenonsi M . The Biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev 2014; 94: 1287–1312.

    CAS  PubMed  Google Scholar 

  117. Kodaka M, Hata Y . The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2014; 72: 285–306.

    PubMed  Google Scholar 

  118. Barron DA, Kagey JD . The role of the Hippo pathway in human disease and tumorigenesis. Clin Transl Med 2014; 3: 25.

    PubMed  PubMed Central  Google Scholar 

  119. Boin A, Couvelard A, Couderc C, Brito I, Filipescu D, Kalamarides M et al. Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro-oncology 2014; 16: 1196–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A . The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 2008; 10: 1204–1212.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Li W, You L, Cooper J, Schiavon G, Pepe-Caprio A, Zhou L et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 2010; 140: 477–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mori T, Gotoh S, Shirakawa M, Hakoshima T . Structural basis of DDB1-and-Cullin 4-associated Factor 1 (DCAF1) recognition by merlin/NF2 and its implication in tumorigenesis by CD44-mediated inhibition of merlin suppression of DCAF1 function. Genes Cells 2014; 19: 603–619.

    CAS  PubMed  Google Scholar 

  123. Cooper J, Li W, You L, Schiavon G, Pepe-Caprio A, Zhou L et al. Merlin/NF2 functions upstream of the nuclear E3 ubiquitin ligase CRL4DCAF1 to suppress oncogenic gene expression. Sci Signal 2011; 4: pt6.

    PubMed  Google Scholar 

  124. Li W, Cooper J, Zhou L, Yang C, Erdjument-Bromage H, Zagzag D et al. Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus. Cancer Cell 2014; 26: 48–60.

    PubMed  PubMed Central  Google Scholar 

  125. Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D . Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 2013; 154: 1342–1355.

    CAS  PubMed  Google Scholar 

  126. Flaiz C, Utermark T, Parkinson DB, Poetsch A, Hanemann CO . Impaired intercellular adhesion and immature adherens junctions in merlin-deficient human primary schwannoma cells. Glia 2008; 56: 506–515.

    CAS  PubMed  Google Scholar 

  127. Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M . YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 2014; 588: 2663–2670.

    CAS  PubMed  Google Scholar 

  128. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007; 21: 2747–2761.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474: 179–183.

    CAS  PubMed  Google Scholar 

  130. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 2013; 154: 1047–1059.

    CAS  PubMed  Google Scholar 

  131. Wada K, Itoga K, Okano T, Yonemura S, Sasaki H . Hippo pathway regulation by cell morphology and stress fibers. Development 2011; 138: 3907–3914.

    CAS  PubMed  Google Scholar 

  132. Boggiano JC, Fehon RG . Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Dev Cell 2012; 22: 695–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Robinson BS, Moberg KH . Cell-cell junctions: alpha-catenin and E-cadherin help fence in Yap1. Curr Biol 2011; 21: R890–R892.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Schroeder MC, Halder G . Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin Cell Dev Biol 2012; 23: 803–811.

    CAS  PubMed  Google Scholar 

  135. Yi C, Shen Z, Stemmer-Rachamimov A, Dawany N, Troutman S, Showe LC et al. The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci Signal 2013; 6: ra77.

    PubMed  PubMed Central  Google Scholar 

  136. Yi C, Troutman S, Fera D, Stemmer-Rachamimov A, Avila JL, Christian N et al. A tight junction-associated Merlin-angiomotin complex mediates Merlin's regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell 2011; 19: 527–540.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pass HI, Vogelzang N, Hahn S, Carbone M . Malignant pleural mesothelioma. Curr Probl Cancer 2004; 28: 93–174.

    PubMed  Google Scholar 

  138. Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF, Gazdar AF et al. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res 1995; 55: 1227–1231.

    CAS  PubMed  Google Scholar 

  139. Cheng JQ, Lee WC, Klein MA, Cheng GZ, Jhanwar SC, Testa JR . Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer 1999; 24: 238–242.

    CAS  PubMed  Google Scholar 

  140. Baser ME, De Rienzo A, Altomare D, Balsara BR, Hedrick NM, Gutmann DH et al. Neurofibromatosis 2 and malignant mesothelioma. Neurology 2002; 59: 290–291.

    CAS  PubMed  Google Scholar 

  141. Thurneysen C, Opitz I, Kurtz S, Weder W, Stahel RA, Felley-Bosco E . Functional inactivation of NF2/merlin in human mesothelioma. Lung Cancer 2009; 64: 140–147.

    PubMed  Google Scholar 

  142. Fleury-Feith J, Lecomte C, Renier A, Matrat M, Kheuang L, Abramowski V et al. Hemizygosity of Nf2 is associated with increased susceptibility to asbestos-induced peritoneal tumours. Oncogene 2003; 22: 3799–3805.

    CAS  PubMed  Google Scholar 

  143. Altomare DA, Vaslet CA, Skele KL, De Rienzo A, Devarajan K, Jhanwar SC et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res 2005; 65: 8090–8095.

    CAS  PubMed  Google Scholar 

  144. Xiao GH, Gallagher R, Shetler J, Skele K, Altomare DA, Pestell RG et al. The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 2005; 25: 2384–2394.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Altomare DA, You H, Xiao GH, Ramos-Nino ME, Skele KL, De Rienzo A et al. Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 2005; 24: 6080–6089.

    CAS  PubMed  Google Scholar 

  146. Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI . NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 2003; 17: 1090–1100.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Yokoyama T, Osada H, Murakami H, Tatematsu Y, Taniguchi T, Kondo Y et al. YAP1 is involved in mesothelioma development and negatively regulated by Merlin through phosphorylation. Carcinogenesis 2008; 29: 2139–2146.

    CAS  PubMed  Google Scholar 

  148. Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res 2011; 71: 873–883.

    CAS  PubMed  Google Scholar 

  149. Smole Z, Thoma CR, Applegate KT, Duda M, Gutbrodt KL, Danuser G et al. Tumor suppressor NF2/Merlin is a microtubule stabilizer. Cancer Res 2014; 74: 353–362.

    CAS  PubMed  Google Scholar 

  150. Poulikakos PI, Xiao GH, Gallagher R, Jablonski S, Jhanwar SC, Testa JR . Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene 2006; 25: 5960–5968.

    CAS  PubMed  Google Scholar 

  151. McClatchey AI, Saotome I, Mercer K, Crowley D, Gusella JF, Bronson RT et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 1998; 12: 1121–1133.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Bianchi AB, Hara T, Ramesh V, Gao J, Klein-Szanto AJ, Morin F et al. Mutations in transcript isoforms of the neurofibromatosis 2 gene in multiple human tumour types. Nat Genet 1994; 6: 185–192.

    CAS  PubMed  Google Scholar 

  153. Yoo NJ, Park SW, Lee SH . Mutational analysis of tumour suppressor gene NF2 in common solid cancers and acute leukaemias. Pathology 2012; 44: 29–32.

    CAS  PubMed  Google Scholar 

  154. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP . Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998; 72: 141–196.

    CAS  PubMed  Google Scholar 

  155. Esteller M . CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002; 21: 5427–5440.

    CAS  PubMed  Google Scholar 

  156. Larsson J, Ohishi M, Garrison B, Aspling M, Janzen V, Adams GB et al. Nf2/merlin regulates hematopoietic stem cell behavior by altering microenvironmental architecture. Cell Stem Cell 2008; 3: 221–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA . ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 2002; 298: 597–600.

    CAS  PubMed  Google Scholar 

  158. Hiemer SE, Varelas X . Stem cell regulation by the Hippo pathway. Biochim Biophys Acta 2013; 1830: 2323–2334.

    CAS  PubMed  Google Scholar 

  159. Ramos A, Camargo FD . The Hippo signaling pathway and stem cell biology. Trends Cell Biol 2012; 22: 339–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhao B, Tumaneng K, Guan KL . The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011; 13: 877–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Yaegashi S, Sachse R, Ohuchi N, Mori S, Sekiya T . Low incidence of a nucleotide sequence alteration of the neurofibromatosis 2 gene in human breast cancers. Jpn J Cancer Res 1995; 86: 929–933.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Allison KH, Sledge GW Jr. . Heterogeneity and Cancer. Oncology 2014; 28: 772–778.

    PubMed  Google Scholar 

  163. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.

    PubMed  Google Scholar 

  164. Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, Du J et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene 2012; 31: 3397–3408.

    CAS  PubMed  Google Scholar 

  165. Arakawa H, Hayashi N, Nagase H, Ogawa M, Nakamura Y . Alternative splicing of the NF2 gene and its mutation analysis of breast and colorectal cancers. Hum Mol Genet 1994; 3: 565–568.

    CAS  PubMed  Google Scholar 

  166. Rustgi AK, Xu L, Pinney D, Sterner C, Beauchamp R, Schmidt S et al. Neurofibromatosis 2 gene in human colorectal cancer. Cancer Genet Cytogenet 1995; 84: 24–26.

    CAS  PubMed  Google Scholar 

  167. Cacev T, Aralica G, Loncar B, Kapitanovic S . Loss of NF2/Merlin expression in advanced sporadic colorectal cancer. Cell Oncol 2014; 37: 69–77.

    CAS  Google Scholar 

  168. Pineau P, Marchio A, Nagamori S, Seki S, Tiollais P, Dejean A . Homozygous deletion scanning in hepatobiliary tumor cell lines reveals alternative pathways for liver carcinogenesis. Hepatology 2003; 37: 852–861.

    CAS  PubMed  Google Scholar 

  169. Benhamouche S, Curto M, Saotome I, Gladden AB, Liu CH, Giovannini M et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev 2010; 24: 1718–1730.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009; 16: 425–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA 2010; 107: 1431–1436.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci USA 2010; 107: 1437–1442.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 2010; 19: 27–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kawana Y, Ichikawa T, Suzuki H, Ueda T, Komiya A, Ichikawa Y et al. Loss of heterozygosity at 7q31.1 and 12p13-12 in advanced prostate cancer. Prostate 2002; 53: 60–64.

    CAS  PubMed  Google Scholar 

  175. Malhotra A, Shibata Y, Hall IM, Dutta A . Chromosomal structural variations during progression of a prostate epithelial cell line to a malignant metastatic state inactivate the NF2, NIPSNAP1, UGT2B17, and LPIN2 genes. Cancer Biol Ther 2013; 14: 840–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Horiguchi A, Zheng R, Shen R, Nanus DM . Inactivation of the NF2 tumor suppressor protein merlin in DU145 prostate cancer cells. Prostate 2008; 68: 975–984.

    CAS  PubMed  Google Scholar 

  177. Lau YK, Murray LB, Houshmandi SS, Xu Y, Gutmann DH, Yu Q . Merlin is a potent inhibitor of glioma growth. Cancer Res 2008; 68: 5733–5742.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Morales FC, Molina JR, Hayashi Y, Georgescu MM . Overexpression of ezrin inactivates NF2 tumor suppressor in glioblastoma. Neuro-oncology 2010; 12: 528–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Guerrero PA, Yin W, Camacho L, Marchetti D . Oncogenic role of Merlin/NF2 in glioblastoma. Oncogene 2014, e-pub ahead of print 21 July 2014 doi:10.1038/onc.2014.185.

    PubMed  PubMed Central  Google Scholar 

  180. Sheikh HA, Tometsko M, Niehouse L, Aldeeb D, Swalsky P, Finkelstein S et al. Molecular genotyping of medullary thyroid carcinoma can predict tumor recurrence. Am J Surg Pathol 2004; 28: 101–106.

    PubMed  Google Scholar 

  181. Murray LB, Lau YK, Yu Q . Merlin is a negative regulator of human melanoma growth. PLoS One 2012; 7: e43295.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Frontzek F, Nitzlaff S, Horstmann M, Schwab A, Stock C . Functional interdependence of NHE1 and merlin in human melanoma cells. Biochem Cell Biol 2014; 92: 530–540.

    CAS  PubMed  Google Scholar 

  183. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343: 84–87.

    CAS  PubMed  Google Scholar 

  184. Reinhold WC, Varma S, Sousa F, Sunshine M, Abaan OD, Davis SR et al. NCI-60 whole exome sequencing and pharmacological CellMiner analyses. PLoS One 2014; 9: e101670.

    PubMed  PubMed Central  Google Scholar 

  185. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483: 570–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013; 41 (Database issue): D955–D961.

    CAS  PubMed  Google Scholar 

  187. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468: 973–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Sabha N, Au K, Agnihotri S, Singh S, Mangat R, Guha A et al. Investigation of the in vitro therapeutic efficacy of nilotinib in immortalized human NF2-null vestibular schwannoma cells. PLoS One 2012; 7: e39412.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Mukherjee J, Kamnasaran D, Balasubramaniam A, Radovanovic I, Zadeh G, Kiehl TR et al. Human schwannomas express activated platelet-derived growth factor receptors and c-kit and are growth inhibited by Gleevec (Imatinib Mesylate). Cancer Res 2009; 69: 5099–5107.

    CAS  PubMed  Google Scholar 

  190. Ammoun S, Schmid MC, Triner J, Manley P, Hanemann CO . Nilotinib alone or in combination with selumetinib is a drug candidate for neurofibromatosis type 2. Neuro-oncology 2011; 13: 759–766.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health 5R01DC10189 and 5R01NS062825 grants. We thank AB Knott for editorial assistance and Dr C Vivacharawongse for reviewing the manuscript and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Fernández-Valle.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrilli, A., Fernández-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 35, 537–548 (2016). https://doi.org/10.1038/onc.2015.125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.125

This article is cited by

Search

Quick links