Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Beyond cytokinesis: the emerging roles of CEP55 in tumorigenesis

Subjects

Abstract

CEP55 was initially identified as a pivotal component of abscission, the final stage of cytokinesis, serving to regulate the physical separation of two daughter cells. Over the past 10 years, several studies have illuminated additional roles for CEP55 including regulating the PI3K/AKT pathway and midbody fate. Concurrently, CEP55 has been studied in the context of cancers including those of the breast, lung, colon and liver. CEP55 overexpression has been found to significantly correlate with tumor stage, aggressiveness, metastasis and poor prognosis across multiple tumor types and therefore has been included as part of several prognostic ‘gene signatures’ for cancer. Here by discussing in depth the functions of CEP55 across different effector pathways, and also its roles as a biomarker and driver of tumorigenesis, we assemble an exhaustive review, thus commemorating a decade of research on CEP55.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Fabbro M, Zhou BB, Takahashi M, Sarcevic B, Lal P, Graham ME et al. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev Cell 2005; 9: 477–488.

    Article  CAS  PubMed  Google Scholar 

  2. Carlton JG, Martin-Serrano J . Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 2007; 316: 1908–1912.

    Article  CAS  PubMed  Google Scholar 

  3. Carlton JG, Agromayor M, Martin-Serrano J . Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc Natl Acad Sci USA 2008; 105: 10541–10546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee HH, Elia N, Ghirlando R, Lippincott-Schwartz J, Hurley JH . Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 2008; 322: 576–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green RA, Paluch E, Oegema K . Cytokinesis in animal cells. Annu Rev Cell Dev Biol 2012; 28: 29–58.

    Article  CAS  PubMed  Google Scholar 

  6. Mierzwa B, Gerlich DW . Cytokinetic abscission: molecular mechanisms and temporal control. Dev Cell 2014; 31: 525–538.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar A, Rajendran V, Sethumadhavan R, Purohit R . CEP proteins: the knights of centrosome dynasty. Protoplasma 2013; 250: 965–983.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y . Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol Biol Cell 2002; 13: 3235–3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martinez-Garay I, Rustom A, Gerdes HH, Kutsche K . The novel centrosomal associated protein CEP55 is present in the spindle midzone and the midbody. Genomics 2006; 87: 243–253.

    Article  CAS  PubMed  Google Scholar 

  10. Sauer G, Korner R, Hanisch A, Ries A, Nigg EA, Sillje HHW . Proteome analysis of the human mitotic spindle. Mol Cell Proteom 2005; 4: 35–43.

    Article  CAS  Google Scholar 

  11. Zhao WM, Seki A, Fang G . Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol Biol Cell 2006; 17: 3881–3896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mondal G, Rowley M, Guidugli L, Wu J, Pankratz VS, Couch FJ . BRCA2 localization to the midbody by filamin A regulates cep55 signaling and completion of cytokinesis. Dev Cell 2012; 23: 137–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neto H, Kaupisch A, Collins LL, Gould GW . Syntaxin 16 is a master recruitment factor for cytokinesis. Mol Biol Cell 2013; 24: 3663–3674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. Embo J 2007; 26: 4215–4227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gromley A, Yeaman C, Rosa J, Redick S, Chen C-T, Mirabelle S et al. Centriolin anchoring of exocyst and snare complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 2005; 123: 75–87.

    Article  CAS  PubMed  Google Scholar 

  16. Lekomtsev S, Guizetti J, Pozniakovsky A, Gerlich DW, Petronczki M . Evidence that the tumor-suppressor protein BRCA2 does not regulate cytokinesis in human cells. J Cell Sci 2010; 123: 1395–1400.

    Article  CAS  PubMed  Google Scholar 

  17. Guizetti J, Schermelleh L, Mantler J, Maar S, Poser I, Leonhardt H et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 2011; 331: 1616–1620.

    Article  CAS  PubMed  Google Scholar 

  18. Morita E, Colf LA, Karren MA, Sandrin V, Rodesch CK, Sundquist WI . Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc Natl Acad Sci USA 2010; 107: 12889–12894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van der Horst A, Khanna KK . The peptidyl-prolyl isomerase Pin1 regulates cytokinesis through Cep55. Cancer Res 2009; 69: 6651–6659.

    Article  CAS  PubMed  Google Scholar 

  20. van der Horst A, Simmons J, Khanna KK . Cep55 stabilization is required for normal execution of cytokinesis. Cell Cycle 2009; 8: 3742–3749.

    Article  CAS  PubMed  Google Scholar 

  21. Bastos RN, Barr FA . Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J Cell Biol 2010; 191: 751–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Pelletier L, Gingras A-C . Myotubularin-related proteins 3 & 4 interact with PLK1 and CEP55 to control CEP55 recruitment to the midbody and ensure proper abscission. Mol Cell Proteom 2015; 14: 946–960.

    Article  CAS  Google Scholar 

  23. Greenbaum MP, Iwamori T, Buchold GM, Matzuk MM . Germ cell intercellular bridges. Cold Spring Harb Perspect Biol 2011; 3: a005850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chang YC, Chen YJ, Wu CH, Wu YC, Yen TC, Ouyang P . Characterization of centrosomal proteins Cep55 and pericentrin in intercellular bridges of mouse testes. J Cell Biochem 2010; 109: 1274–1285.

    CAS  PubMed  Google Scholar 

  25. Iwamori T, Iwamori N, Ma L, Edson MA, Greenbaum MP, Matzuk MM . TEX14 interacts with CEP55 to block cell abscission. Mol Cell Biol 2010; 30: 2280–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Greenbaum MP, Yan W, Wu M-H, Lin Y-N, Agno JE, Sharma M et al. TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci USA 2006; 103: 4982–4987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 2011; 13: 1214–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ettinger AW, Wilsch-Brauninger M, Marzesco A-M, Bickle M, Lohmann A, Maliga Z et al. Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat Commun 2011; 2: 503.

    Article  PubMed  CAS  Google Scholar 

  29. Raposo Ga, Stoorvogel W . Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200: 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simons M, Raposo G . Exosomes - vesicular carriers for intercellular communication. Curr OpinCell Biol 2009; 21: 575–581.

    Article  CAS  Google Scholar 

  31. Zhang H-G, Grizzle W . Exosomes and cancer: a newly described pathway of immune suppression. Clin Cancer Res 2011; 17: 959–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Azmi A, Bao B, Sarker F . exosomes in cancer development, metastasis and drug resistance: a comprehensive review. Cancer Metastasis Rev 2013; 32: 623–642.

    Article  CAS  PubMed  Google Scholar 

  33. Hong B, Cho J-H, Kim H, Choi E-J, Rho S, Kim J et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 2009; 10: 556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hemmings BA, Restuccia DF . PI3K-PKB/Akt Pathway. Cold Spring Harb Perspect Biol 2012; 4: a011189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Manning BD, Cantley LC . AKT/PKB Signaling: Navigating Downstream. Cell 2007; 129: 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheung M, Testa J . Diverse mechanisms of AKT pathway activation in human maligancy. Curr Cancer Drug Targets 2013; 13: 234–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen CH, Lu PJ, Chen YC, Fu SL, Wu KJ, Tsou AP et al. FLJ10540-elicited cell transformation is through the activation of PI3-kinase/AKT pathway. Oncogene 2007; 26: 4272–4283.

    Article  CAS  PubMed  Google Scholar 

  38. Chen CH, Lai JM, Chou TY, Chen CY, Su LJ, Lee YC et al. VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3K/AKT pathway. PLoS One 2009; 4: e5052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hwang CF, Shiu LY, Su LJ, Yu-Fang Y, Wang WS, Huang SC et al. Oncogenic fibulin-5 promotes nasopharyngeal carcinoma cell metastasis through the FLJ10540/AKT pathway and correlates with poor prognosis. PLoS One 2013; 8: e84218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Goel HL, Mercurio AM . VEGF targets the tumour cell. Nat Rev Cancer 2013; 13: 871–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yanagisawa H, Schluterman M, Brekken R . Fibulin-5 an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal 2009; 3: 337–347.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jeffery J, Neyt C, Moore W, Paterson S, Bower NI, Chenevix-Trench G et al. Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish. FASEB J e-pub ahead of print.

  43. Tsai C-Y, Chen C-H, Chang AYW, Chan JYH, Chan SHH . Upregulation of FLJ10540, a PI3K-association protein, in rostral ventrolateral medulla impairs brain stem cardiovascular regulation during mevinphos intoxication. Biochem Pharmacol 2015; 93: 34–41.

    Article  CAS  PubMed  Google Scholar 

  44. Tao J, Zhi X, Tian Y, Li Z, Zhu Y, Wang W et al. CEP55 contributes to human gastric carcinoma by regulating cell proliferation. Tumour Biol 2014; 35: 4389–4399.

    Article  CAS  PubMed  Google Scholar 

  45. Waseem A, Ali M, Odell EW, Fortune F, Teh MT . Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma. Oral Oncol 2010; 46: 536–542.

    Article  CAS  PubMed  Google Scholar 

  46. Gemenetzidis E, Bose A, Riaz AM, Chaplin T, Young BD, Ali M et al. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS One 2009; 4: e4849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Laoukili J, Kooistra M, Bras A, Kauw J, Kerkhoven R, Morrison A et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 2005; 7: 126–136.

    Article  CAS  PubMed  Google Scholar 

  48. Laoukili J, Stahl M, Medema RH . FoxM1: At the crossroads of ageing and cancer. Biochim Biophys Acta 2007; 1775: 92–102.

    CAS  PubMed  Google Scholar 

  49. Myatt SS, Lam EWF . The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007; 7: 847–859.

    Article  CAS  PubMed  Google Scholar 

  50. Chen CH, Chien CY, Huang CC, Hwang CF, Chuang HC, Fang FM et al. Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity. Oncogene 2009; 28: 2723–2737.

    Article  CAS  PubMed  Google Scholar 

  51. Kato K, Hara A, Kuno T, Kitaori N, Huilan Z, Mori H et al. Matrix metalloproteinases 2 and 9 in oral squamous cell carcinomas: manifestation and localization of their activity. J Cancer Res Clin Oncol 2005; 131: 340–346.

    Article  CAS  PubMed  Google Scholar 

  52. Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 2008; 10: 1076–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang YC, Wu CH, Yen TC, Ouyang P . Centrosomal protein 55 (Cep55) stability is negatively regulated by p53 protein through Polo-like kinase 1 (Plk1). J Biol Chem 2012; 287: 4376–4385.

    Article  CAS  PubMed  Google Scholar 

  54. Levine AJ, Momand J, Finlay CA . The p53 tumour suppressor gene. Nature 1991; 351: 453–456.

    Article  CAS  PubMed  Google Scholar 

  55. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009; 106: 3207–3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pandit B, Halasi M, Gartel AL . p53 negatively regulates expression of FoxM1. Cell Cycle 2009; 8: 3425–3427.

    Article  CAS  PubMed  Google Scholar 

  57. McKenzie L, King S, Marcar L, Nicol S, Dias SS, Schumm K et al. p53-dependent repression of polo-like kinase-1 (PLK1). Cell cycle 2010; 9: 4200–4212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Innocente SA, Abrahamson JLA, Cogswell JP, Lee JM . p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 1999; 96: 2147–2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kruger T, Miller A, Godwin A, Wang J . Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit Rev Oncol Hematol 2014; 89: 330–341.

    Article  PubMed  Google Scholar 

  60. Chen CH, Shiu LY, Su LJ, Huang CY, Huang SC, Huang CC et al. FLJ10540 is associated with tumor progression in nasopharyngeal carcinomas and contributes to nasopharyngeal cell proliferation, and metastasis via osteopontin/CD44 pathway. J Transl Med 2012; 10: 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38: 1043–1048.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 2013; 23: 48–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol 2011; 12: 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Montero-Conde C, Martin-Campos JM, Lerma E, Gimenez G, Martinez-Guitarte JL, Combalia N et al. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene 2007; 27: 1554–1561.

    Article  PubMed  CAS  Google Scholar 

  65. Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 2005; 11: 5730–5739.

    Article  CAS  PubMed  Google Scholar 

  66. Cheng W-Y, Yang T-HO, Anastassiou D . Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol 2013; 9: e1002920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Al-Ejeh F, Simpson PT, Sanus JM, Klein K, Kalimutho M, Shi W et al. Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer. Oncogenesis 2014; 3: e100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma X-J, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 5974–5979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Naderi A, Teschendorff AE, Barbosa-Morais NL, Pinder SE, Green AR, Powe DG et al. A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 2006; 26: 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  70. Hu Y, Wu G, Rusch M, Lukes L, Buetow KH, Zhang J et al. Integrated cross-species transcriptional network analysis of metastatic susceptibility. Proc Natl Acad Sci USA 2012; 109: 3184–3189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coutant C, Rouzier R, Qi Y, Lehmann-Che J, Bianchini G, Iwamoto T et al. Distinct p53 gene signatures are needed to predict prognosis and response to chemotherapy in er-positive and er-negative breast cancers. Clin Cancer Res 2011; 17: 2591–2601.

    Article  CAS  PubMed  Google Scholar 

  72. Colak D, Nofal A, Albakheet A, Nirmal M, Jeprel H, Eldali A et al. Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. PLoS One 2013; 8: e63204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen D-T, Nasir A, Culhane A, Venkataramu C, Fulp W, Rubio R et al. Proliferative genes dominate malignancy-risk gene signature in histologically-normal breast tissue. Breast Cancer Res Treat 2010; 119: 335–346.

    Article  PubMed  Google Scholar 

  74. Martin KJ, Magee D, Fournier MV Gene expression signature as a predictor of chemotherapeutic response in breast cancer. USA 2010; PCT/US2011/039325.

  75. Carter SL, Szallasi Z, Eklund A . Prognosis indicators for solid human tumors. USA 2005; PCT/US2006/047662.

  76. Perou CM, Bernard PS, Nielsen TO, Ellis MJ, Parker JS, Martin M et al. Methods of Treating Breast Cancer With Taxane Therapy. USA 2012; PCT/US2012/067317.

  77. Wagner S, Stone S, Gutin A, Reid J . Gene signatures for lung cancer prognosis and therapy selection. USA 2011; PCT/US2012/051447.

  78. Stone S, Gutin A, Wagner S, Reid J . Gene signatures for cancer diagnosis and prognosis. USA 2010; PCT/US2011/049760.

  79. Chen DT, Yeatman TJ . Malignancy-risk signature from histologically normal breast tissue. USA 2011; PCT/US2009/030778.

  80. Anastassiou D, Cheng W . Biomolecular events in cancer revealed by attractor metagenes. USA 2012; PCT/US2013/037720.

  81. Perou CM, Parker JS, Marron JS, Nobel A, Bernard PS, Ellis M et al. Gene expression profiles to predict breast cancer outcomes. USA 2008. PCT/US2009/045820.

  82. Fournier MV, Martin KJ, Kenny PA, Xhaja K, Bosch I, Yaswen P et al. Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer. Cancer Res 2006; 66: 7095–7102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Martin KJ, Patrick DR, Bissell MJ, Fournier MV . Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS One 2008; 3: e2994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kikuchi T, Daigo Y, Katagiri T, Tsunoda T, Okada K, Kakiuchi S et al. Expression profiles of non-small cell lung cancers on cDNA microarrays: identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs. Oncogene 2003; 22: 2192–2205.

    Article  CAS  PubMed  Google Scholar 

  85. Sakai M, Shimokawa T, Kobayashi T, Matsushima S, Yamada Y, Nakamura Y et al. Elevated expression of C10orf3 (chromosome 10 open reading frame 3) is involved in the growth of human colon tumor. Oncogene 2005; 25: 480–486.

    Article  CAS  Google Scholar 

  86. Singh PK, Srivastava AK, Rath SK, Dalela D, Goel MM, Bhatt ML . Expression and clinical significance of centrosomal protein 55 (CEP55) in human urinary bladder transitional cell carcinoma. Immunobiology 2014; 220: 103–108.

    Article  PubMed  CAS  Google Scholar 

  87. Inoda S, Hirohashi Y, Torigoe T, Nakatsugawa M, Kiriyama K, Nakazawa E et al. Cep55/c10orf3, a tumor antigen derived from a centrosome residing protein in breast carcinoma. J Immunother 2009; 32: 474–485.

    Article  CAS  PubMed  Google Scholar 

  88. Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R et al. The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol Oncol 2011; 5: 164–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Inoda S, Hirohashi Y, Torigoe T, Morita R, Takahashi A, Asanuma H et al. Cytotoxic T lymphocytes efficiently recognize human colon cancer stem-like cells. Am J Pathol 2011; 178: 1805–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Inoda S, Morita R, Hirohashi Y, Torigoe T, Asanuma H, Nakazawa E et al. The feasibility of Cep55/c10orf3 derived peptide vaccine therapy for colorectal carcinoma. Exp Mol Pathol 2011; 90: 55–60.

    Article  CAS  PubMed  Google Scholar 

  91. Ochi T, Fujiwara H, Suemori K, Azuma T, Yakushijin Y, Hato T et al. Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood 2008; 113: 66–74.

    Article  PubMed  CAS  Google Scholar 

  92. Kao H, Marto JA, Hoffmann TK, Shabanowitz J, Finkelstein SD, Whiteside TL et al. Identification of cyclin B1 as a shared human epithelial tumor-associated antigen recognized by T cells. J Exp Med 2001; 194: 1313–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DS is supported by a Griffith University International and Postgraduate Research Scholarship. MK is supported by a project grant from Cancer Council Queensland (ID1087363). This work was supported by a program grant from the National Health & Medical Research Council (NHMRC) to KKK (ID 1017028). KKK is a NHMRC Senior Principal Research Fellow (ID 613638).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K K Khanna.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeffery, J., Sinha, D., Srihari, S. et al. Beyond cytokinesis: the emerging roles of CEP55 in tumorigenesis. Oncogene 35, 683–690 (2016). https://doi.org/10.1038/onc.2015.128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.128

This article is cited by

Search

Quick links