Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of complement-dependent cytotoxicity by TGF-β-induced epithelial–mesenchymal transition

Abstract

The process of epithelial–mesenchymal transition (EMT), in addition to being an initiating event for tumor metastasis, is implicated in conferring several clinically relevant properties to disseminating cancer cells. These include stem cell-like properties, resistance to targeted therapies and ability to evade immune surveillance. Enrichment analysis of gene expression changes during transforming growth factor-β (TGF-β)-induced EMT in lung cancer cells identified complement cascade as one of the significantly enriched pathway. Further analysis of the genes in the complement pathway revealed an increase in the expression of complement inhibitors and a decrease in the expression of proteins essential for complement activity. In this study, we tested whether EMT confers resistance to complement-dependent cytotoxicity (CDC) in lung cancer cells and promotes tumor progression. CD59 is a potent inhibitor of membrane attack complex that mediates complement-dependent cell lysis. We observed a significant increase in the CD59 expression on the surface of cells after TGF-β-induced EMT. Furthermore, CD59 knockdown restored susceptibility of cells undergoing EMT to cetuximab-mediated CDC. TGF-β-induced CD59 expression during EMT is dependent on Smad3 but not on Smad2. Chromatin immunoprecipitation analysis confirmed that Smad3 directly binds to the CD59 promoter. Stable knockdown of CD59 in A549 cells inhibited experimental metastasis. These results demonstrate that TGF-β-induced EMT and CD59 expression confers an immune-evasive mechanism to disseminating tumor cells facilitating tumor progression. Together, our data demonstrates that CD59 inhibition may serve as an adjuvant to enhance the efficacy of antibody-mediated therapies, as well as to inhibit metastasis in lung cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lamouille S, Xu J, Derynck R . Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013; 339: 580–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    CAS  PubMed  Google Scholar 

  4. Tarin D, Thompson EW, Newgreen DF . The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 2005; 65: 5996–6000 discussion 00-1.

    Article  CAS  PubMed  Google Scholar 

  5. Zavadil J, Haley J, Kalluri R, Muthuswamy SK, Thompson E . Epithelial-mesenchymal transition. Cancer Res 2008; 68: 9574–9577.

    Article  CAS  PubMed  Google Scholar 

  6. Zavadil J, Bottinger EP . TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005; 24: 5764–5774.

    Article  CAS  PubMed  Google Scholar 

  7. Kim WS, Park C, Jung YS, Kim HS, Han J, Park CH et al. Reduced transforming growth factor-beta type II receptor (TGF-beta RII) expression in adenocarcinoma of the lung. Anticancer Res 1999; 19: 301–306.

    CAS  PubMed  Google Scholar 

  8. Kong F, Jirtle RL, Huang DH, Clough RW, Anscher MS . Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer 1999; 86: 1712–1719.

    Article  CAS  PubMed  Google Scholar 

  9. Keshamouni VG, Michailidis G, Grasso CS, Anthwal S, Strahler JR, Walker A et al. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J Proteome Res 2006; 5: 1143–1154.

    Article  CAS  PubMed  Google Scholar 

  10. Reka AK, Kuick R, Kurapati H, Standiford TJ, Omenn GS, Keshamouni VG . Identifying inhibitors of epithelial-mesenchymal transition by connectivity map-based systems approach. J Thorac Oncol 2011; 6: 1784–1792.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reka AK, Kurapati H, Narala VR, Bommer G, Chen J, Standiford TJ et al. Peroxisome proliferator-activated receptor-gamma activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial-mesenchymal transition. Mol Cancer Ther 2010; 9: 3221–3232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reka AK, Chen G, Jones RC, Amunugama R, Kim S, Karnovsky A et al. Epithelial-mesenchymal transition-associated secretory phenotype predicts survival in lung cancer patients. Carcinogenesis 2014; 35: 1292–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walport MJ . Complement. First of two parts. N Engl J Med 2001; 344: 1058–1066.

    Article  CAS  PubMed  Google Scholar 

  14. Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M . Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 2003; 40: 109–123.

    Article  CAS  PubMed  Google Scholar 

  15. Jurianz K, Ziegler S, Garcia-Schuler H, Kraus S, Bohana-Kashtan O, Fishelson Z et al. Complement resistance of tumor cells: basal and induced mechanisms. Mol Immunol 1999; 36: 929–939.

    Article  CAS  PubMed  Google Scholar 

  16. Varsano S, Rashkovsky L, Shapiro H, Ophir D, Mark-Bentankur T . Human lung cancer cell lines express cell membrane complement inhibitory proteins and are extremely resistant to complement-mediated lysis; a comparison with normal human respiratory epithelium in vitro, and an insight into mechanism(s) of resistance. Clin Exp Immunol 1998; 113: 173–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Donin N, Jurianz K, Ziporen L, Schultz S, Kirschfink M, Fishelson Z . Complement resistance of human carcinoma cells depends on membrane regulatory proteins, protein kinases and sialic acid. Clin Exp Immunol 2003; 131: 254–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim DD, Song WC . Membrane complement regulatory proteins. Clin Immunol 2006; 118: 127–136.

    Article  CAS  PubMed  Google Scholar 

  19. Yan J, Allendorf DJ, Li B, Yan R, Hansen R, Donev R . The role of membrane complement regulatory proteins in cancer immunotherapy. Adv Exp Med Biol 2008; 632: 159–174.

    CAS  PubMed  Google Scholar 

  20. Watson NF, Durrant LG, Madjd Z, Ellis IO, Scholefield JH, Spendlove I . Expression of the membrane complement regulatory protein CD59 (protectin) is associated with reduced survival in colorectal cancer patients. Cancer Immunol Immunother 2006; 55: 973–980.

    Article  CAS  PubMed  Google Scholar 

  21. Xu C, Jung M, Burkhardt M, Stephan C, Schnorr D, Loening S et al. Increased CD59 protein expression predicts a PSA relapse in patients after radical prostatectomy. Prostate 2005; 62: 224–232.

    Article  CAS  PubMed  Google Scholar 

  22. Nishioka K, Kawamura K, Hirayama T, Kawashima T, Shimada K . The complement system in tumor immunity: significance of elevated levels of complement in tumor bearing hosts. Ann N Y Acad Sci 1976; 276: 303–315.

    Article  CAS  PubMed  Google Scholar 

  23. Keshamouni VG, Jagtap P, Michailidis G, Strahler JR, Kuick R, Reka AK et al. Temporal quantitative proteomics by iTRAQ 2D-LC-MS/MS and corresponding mRNA expression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-Induced epithelial-mesenchymal transition. J Proteome Res 2009; 8: 35–47.

    Article  CAS  PubMed  Google Scholar 

  24. Corrales L, Ajona D, Rafail S, Lasarte JJ, Riezu-Boj JI, Lambris JD et al. Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression. J Immunol 2012; 189: 4674–4683.

    Article  CAS  PubMed  Google Scholar 

  25. Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi I et al. Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am J Pathol 2004; 165: 1955–1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hsu YF, Ajona D, Corrales L, Lopez-Picazo JM, Gurpide A, Montuenga LM et al. Complement activation mediates cetuximab inhibition of non-small cell lung cancer tumor growth in vivo. Mol Cancer 2010; 9: 139.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 2005; 65: 9455–9462.

    Article  CAS  PubMed  Google Scholar 

  28. Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C et al. Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 2011; 103: 714–736.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kalluri R . EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 2009; 119: 1417–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pasch MC, Bos JD, Daha MR, Asghar SS . Transforming growth factor-beta isoforms regulate the surface expression of membrane cofactor protein (CD46) and CD59 on human keratinocytes [corrected]. Eur J Immunol 1999; 29: 100–108.

    Article  CAS  PubMed  Google Scholar 

  32. Jurianz K, Maslak S, Garcia-Schuler H, Fishelson Z, Kirschfink M . Neutralization of complement regulatory proteins augments lysis of breast carcinoma cells targeted with rhumAb anti-HER2. Immunopharmacology 1999; 42: 209–218.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao WP, Zhu B, Duan YZ, Chen ZT . Neutralization of complement regulatory proteins CD55 and CD59 augments therapeutic effect of herceptin against lung carcinoma cells. Oncol Rep 2009; 21: 1405–1411.

    CAS  PubMed  Google Scholar 

  34. Hu W, Ge X, You T, Xu T, Zhang J, Wu G et al. Human CD59 inhibitor sensitizes rituximab-resistant lymphoma cells to complement-mediated cytolysis. Cancer Res 2011; 71: 2298–2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ge X, Wu L, Hu W, Fernandes S, Wang C, Li X et al. rILYd4, a human CD59 inhibitor, enhances complement-dependent cytotoxicity of ofatumumab against rituximab-resistant B-cell lymphoma cells and chronic lymphocytic leukemia. Clin Cancer Res 2011; 17: 6702–6711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Markiewski MM, Lambris JD . Is complement good or bad for cancer patients? A new perspective on an old dilemma. Trends Immunol 2009; 30: 286–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A, Gerard C et al. Modulation of the antitumor immune response by complement. Nat Immunol 2008; 9: 1225–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cragg MS, Howatt WJ, Bloodworth L, Anderson VA, Morgan BP, Glennie MJ . Complement mediated cell death is associated with DNA fragmentation. Cell Death Differ 2000; 7: 48–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by an NIH/NCI (CA132571-01) grant and the Elizabeth A Crary Fund to VGK and NIH/NHLBI HL097564 to TJS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V G Keshamouni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, M., Reka, A., Kurapati, H. et al. Regulation of complement-dependent cytotoxicity by TGF-β-induced epithelial–mesenchymal transition. Oncogene 35, 1888–1898 (2016). https://doi.org/10.1038/onc.2015.258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.258

This article is cited by

Search

Quick links